ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-13
    Description: Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 A) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously approximately 85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed alpha-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Guizhen -- Baker, Matthew L -- Wang, Zhao -- Baker, Mariah R -- Sinyagovskiy, Pavel A -- Chiu, Wah -- Ludtke, Steven J -- Serysheva, Irina I -- P41 GM103832/GM/NIGMS NIH HHS/ -- P41GM103832/GM/NIGMS NIH HHS/ -- R01 GM072804/GM/NIGMS NIH HHS/ -- R01 GM079429/GM/NIGMS NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R01GM072804/GM/NIGMS NIH HHS/ -- R01GM079429/GM/NIGMS NIH HHS/ -- R01GM080139/GM/NIGMS NIH HHS/ -- R21 AR063255/AR/NIAMS NIH HHS/ -- R21 GM100229/GM/NIGMS NIH HHS/ -- R21AR063255/AR/NIAMS NIH HHS/ -- R21GM100229/GM/NIGMS NIH HHS/ -- S10 OD016279/OD/NIH HHS/ -- S10OD016279/OD/NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):336-41. doi: 10.1038/nature15249. Epub 2015 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA. ; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26458101" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Apoproteins/chemistry/metabolism/ultrastructure ; Calcium/metabolism ; Calcium Signaling ; *Cryoelectron Microscopy ; Cytosol/chemistry/metabolism ; Inositol 1,4,5-Trisphosphate Receptors/chemistry/*metabolism/*ultrastructure ; Ion Channel Gating ; Models, Molecular ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rats ; Ryanodine Receptor Calcium Release Channel/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-02
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maini, Philip K -- Baker, Ruth E -- Chuong, Cheng-Ming -- R01 AR042177/AR/NIAMS NIH HHS/ -- R01 AR042177-11/AR/NIAMS NIH HHS/ -- R01 AR042177-12/AR/NIAMS NIH HHS/ -- R01 AR047364/AR/NIAMS NIH HHS/ -- R01 AR047364-04/AR/NIAMS NIH HHS/ -- R01 AR047364-05/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1397-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Mathematical Biology, University of Oxford, Oxford OX1 3LB, UK. maini@maths.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Diffusion ; Hair Follicle/*growth & development/metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Mathematics ; Mice ; *Models, Biological ; Signal Transduction ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaefer, Mark -- Baker, D James -- Gibbons, John H -- Groat, Charles G -- Kennedy, Donald -- Kennel, Charles F -- Rejeski, David -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):44-5. doi: 10.1126/science.1160192.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Biodiversity ; Conservation of Natural Resources ; Ecology ; Fresh Water ; Geological Phenomena ; Geology ; Oceanography ; Oceans and Seas ; *Public Policy ; United States ; United States Government Agencies/*organization & administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-09-20
    Description: FtsZ is an essential bacterial guanosine triphosphatase and homolog of mammalian beta-tubulin that polymerizes and assembles into a ring to initiate cell division. We have created a class of small synthetic antibacterials, exemplified by PC190723, which inhibits FtsZ and prevents cell division. PC190723 has potent and selective in vitro bactericidal activity against staphylococci, including methicillin- and multi-drug-resistant Staphylococcus aureus. The putative inhibitor-binding site of PC190723 was mapped to a region of FtsZ that is analogous to the Taxol-binding site of tubulin. PC190723 was efficacious in an in vivo model of infection, curing mice infected with a lethal dose of S. aureus. The data validate FtsZ as a target for antibacterial intervention and identify PC190723 as suitable for optimization into a new anti-staphylococcal therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haydon, David J -- Stokes, Neil R -- Ure, Rebecca -- Galbraith, Greta -- Bennett, James M -- Brown, David R -- Baker, Patrick J -- Barynin, Vladimir V -- Rice, David W -- Sedelnikova, Sveta E -- Heal, Jonathan R -- Sheridan, Joseph M -- Aiwale, Sachin T -- Chauhan, Pramod K -- Srivastava, Anil -- Taneja, Amit -- Collins, Ian -- Errington, Jeff -- Czaplewski, Lloyd G -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1673-5. doi: 10.1126/science.1159961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prolysis, Begbroke Science Park, Oxfordshire OX5 1PF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Bacillus subtilis/chemistry/*drug effects/genetics ; Bacterial Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Binding Sites ; Cell Division/drug effects ; Crystallography, X-Ray ; Cytoskeletal Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drug Resistance, Bacterial/genetics ; Drug Resistance, Multiple, Bacterial ; Ligands ; Methicillin Resistance ; Mice ; Microbial Sensitivity Tests ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Pyridines/chemistry/metabolism/*pharmacology/therapeutic use ; Staphylococcal Infections/*drug therapy ; Staphylococcus aureus/chemistry/*drug effects ; Thiazoles/chemistry/metabolism/*pharmacology/therapeutic use ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-21
    Description: Cyclic nucleotide-gated (CNG) channels localize exclusively to the plasma membrane of photosensitive outer segments of rod photoreceptors where they generate the electrical response to light. Here, we report the finding that targeting of CNG channels to the rod outer segment required their interaction with ankyrin-G. Ankyrin-G localized exclusively to rod outer segments, coimmunoprecipitated with the CNG channel, and bound to the C-terminal domain of the channel beta1 subunit. Ankyrin-G depletion in neonatal mouse retinas markedly reduced CNG channel expression. Transgenic expression of CNG channel beta-subunit mutants in Xenopus rods showed that ankyrin-G binding was necessary and sufficient for targeting of the beta1 subunit to outer segments. Thus, ankyrin-G is required for transport of CNG channels to the plasma membrane of rod outer segments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kizhatil, Krishnakumar -- Baker, Sheila A -- Arshavsky, Vadim Y -- Bennett, Vann -- EY12859/EY/NEI NIH HHS/ -- P30 EY005722/EY/NEI NIH HHS/ -- P30 EY005722-23/EY/NEI NIH HHS/ -- R01 EY012859/EY/NEI NIH HHS/ -- R01 EY012859-10/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1614-7. doi: 10.1126/science.1169789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299621" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Ankyrins/*metabolism ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cilia/*metabolism ; Cyclic Nucleotide-Gated Cation Channels/*metabolism ; Humans ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Rod Cell Outer Segment/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-09
    Description: Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qureshi, Omar S -- Zheng, Yong -- Nakamura, Kyoko -- Attridge, Kesley -- Manzotti, Claire -- Schmidt, Emily M -- Baker, Jennifer -- Jeffery, Louisa E -- Kaur, Satdip -- Briggs, Zoe -- Hou, Tie Z -- Futter, Clare E -- Anderson, Graham -- Walker, Lucy S K -- Sansom, David M -- 17851/Arthritis Research UK/United Kingdom -- BB/D011000/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H013598/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0400931/Medical Research Council/United Kingdom -- G0401620/Medical Research Council/United Kingdom -- G0802382/Medical Research Council/United Kingdom -- G1000213/Medical Research Council/United Kingdom -- G9818340/Medical Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):600-3. doi: 10.1126/science.1202947. Epub 2011 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*immunology/metabolism ; Antigens, CD28/*immunology ; Antigens, CD80/*immunology/metabolism ; Antigens, CD86/*immunology/metabolism ; CHO Cells ; CTLA-4 Antigen ; Cricetinae ; Cricetulus ; Dendritic Cells/immunology ; *Endocytosis ; Humans ; Jurkat Cells ; Ligands ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Models, Biological ; Ovalbumin/immunology ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; T-Lymphocyte Subsets/*immunology/metabolism ; T-Lymphocytes, Regulatory/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-16
    Description: To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress-1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPR(mt)) in Caenorhabditis elegans. We found that the key point of regulation is the mitochondrial import efficiency of ATFS-1. In addition to a nuclear localization sequence, ATFS-1 has an N-terminal mitochondrial targeting sequence that is essential for UPR(mt) repression. Normally, ATFS-1 is imported into mitochondria and degraded. However, during mitochondrial stress, we found that import efficiency was reduced, allowing a percentage of ATFS-1 to accumulate in the cytosol and traffic to the nucleus. Our results show that cells monitor mitochondrial import efficiency via ATFS-1 to coordinate the level of mitochondrial dysfunction with the protective transcriptional response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nargund, Amrita M -- Pellegrino, Mark W -- Fiorese, Christopher J -- Baker, Brooke M -- Haynes, Cole M -- R01 AG040061/AG/NIA NIH HHS/ -- R01AG040061/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 3;337(6094):587-90. doi: 10.1126/science.1223560. Epub 2012 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700657" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Nucleus/*metabolism ; Gene Expression Regulation ; Mitochondria/*metabolism ; Nuclear Localization Signals/genetics/metabolism ; *Stress, Physiological ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; *Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, R J -- Yates, T L -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1048-9; author reply 1049.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9841449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Biology ; *Museums
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, C S -- Lento, G M -- Cipriano, F -- Dalebout, M L -- Palumbi, S R -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1695-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11186388" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Commerce ; *Conservation of Natural Resources ; Ecosystem ; International Cooperation ; Japan ; *Whales
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-06
    Description: Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, D -- Sali, A -- GM 54762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. dabaker@u.washington.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588250" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; *Computational Biology ; Computer Simulation ; Databases, Factual ; *Genomics ; Humans ; Internet ; *Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Proteins/*chemistry/genetics/physiology ; Sequence Alignment ; Software ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...