ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-11
    Description: Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 18; 2; 111-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P 〈 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P 〈 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P 〈 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P 〈 0.05). During bed rest, urinary pH decreased (P 〈 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 99; 1; 134-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2007-214755 , S-1005
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Medical Informatics and Health Care Systems group in the Office of Space Medicine at NASA Johnson Space Center (JSC) has been tasked by NASA with improving overall medical care on the International Space Station (ISS) and providing insights for medical care for future exploration missions. To accomplish this task, a three day Operational and Research Musculoskeletal Summit was held on August 23-25th, 2005 at Space Center Houston. The purpose of the summit was to review NASA#s a) current strategy for preflight health maintenance and injury screening, b) current treatment methods in-flight, and c) risk mitigation strategy for musculoskeletal injuries or syndromes that could occur or impact the mission. Additionally, summit participants provided a list of research topics NASA should consider to mitigate risks to astronaut health. Prior to the summit, participants participated in a web-based pre-summit forum to review the NASA Space Medical Conditions List (SMCL) of musculoskeletal conditions that may occur on ISS as well as the resources currently available to treat them. Data from the participants were compiled and integrated with the summit proceedings. Summit participants included experts from the extramural physician and researcher communities, and representatives from NASA Headquarters, the astronaut corps, JSC Medical Operations and Human Adaptations and Countermeasures Offices, Glenn Research Center Human Research Office, and the Astronaut Strength, Conditioning, and Reconditioning (ASCR) group. The recommendations in this document are based on a summary of summit discussions and the best possible evidence-based recommendations for musculoskeletal care for astronauts while on the ISS, and include recommendati ons for exploration class missions.
    Keywords: Aerospace Medicine
    Type: Operational and Research Musculoskeletal Summit: Summit Recommendations; 23-25 Aug. 2005; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p 〈 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased 〉55% above preflight levels, p 〈 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p 〈 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p 〈 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p 〈 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p 〈 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.
    Keywords: Aerospace Medicine
    Type: JSC-CN-8528 , Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); 20; 2; 208-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.
    Keywords: Aerospace Medicine
    Type: Bone Loss During Space Flight; 23-24 Jun. 2005; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.
    Keywords: Aerospace Medicine
    Type: GSBS Committee for Career Development; 27 Apr. 2007; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); 76; 5; 441-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...