ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 72.20 ; 72.40 ; 73.60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This paper is concerned with the optimization of growth conditions for a-Si1-x Ge x :H alloys. It is shown that H-dilution of source gases selectively improves the band transport of electrons without significantly affecting the recombination center density or the band transport of holes. It is further shown that the beneficial effects of H-dilution are most pronounced in alloys with comparable densities of Si and Ge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: 61.40 ; 61.80 ; 72.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract n-type a-Si:H films have been irradiated with light, electrons, protons and heavy ion beams. It is shown that the non-thermal creation of dangling-bond defects activates significant densities of previously inactive phosphorus dopants. The relevance of these results is discussed with respect to equilibration phenomena in doped material and with respect to degradation phenomena in a-Si:H solar cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 53 (1991), S. 235-240 
    ISSN: 1432-0630
    Keywords: 61.40 ; 61.80 ; 72.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Hydrogenated amorphous silicon (a-Si:H) films have been irradiated with H+, B+, P+, and Ar+ ion beams. The accumulation and the annealing of irradiation-induced defects has been investigated through a series of electronic transport and PDS measurements. We find that for all projectiles damage accumulation is dominated by atomic displacement collisions with the damage saturating for energy transfers in excess of about 10 eV/target atom. Annealing at elevated temperatures causes the conductivity of doped and irradiated a-Si:H films to increase according to stretched exponential decay curves. All annealing parameters derivable from such fits scale with the energy originally dissipated into atomic displacement collisions. For energy transfers up to 10 eV/target atom the activation energy for annealing increases up to a saturation value and, at the same time, an increasing fraction of the irradiation-induced defects becomes stable against annealing at moderate temperatures (T a〈250° C). We discuss these results with respect to damage accumulation data in crystalline silicon (c-Si) and with regard to the annealing of metastable defects in a-Si:H.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0630
    Keywords: 72.20 ; 72.80 ; 78.65
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Fine-grained (d≈0.1 μm), polycrytalline SiC films were prepared on top of insulating and optically transparent sapphire substrates by means of a thermal crystallization technique. Optical absorption measurements indicate that the individual SiC grains consist of relatively defect-free β-SiC surrounded by high-defect density grain-boundary material. Nominally undoped material exhibits a low de conductivity (δ≈10−8 Ω−1 cm−1) in the dark and an efficient photoconductivity apon illumination with short-wavelength UV light. The temperature dependence of the de transport exhibits a quasi-Arrhenius-type behaviour with average activation energies of the order to 0.6 eV. A characteristic feature of this kind of transport is a continuous increase in activation energy with increasing film temperature. Upon doping with N, P and Al ions, the average activation energy is decreased and room temperature conductivities of the order of 0.1 Ω−1 cm−1 are reached. Doping with B ions, on the other hand, only leads to high-resistivity material. It is shown that the electronic transport in doped SiC-On-Sapphire (SiCOS) films can be successfully modelled in terms of a grain-boundary-dominated conduction process. In this process thermal activation across potential barriers at the grain-boundary surfaces competes with funneling through these same barriers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...