All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 1998-03-07
    Description: The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, L H -- Lau, L F -- Smith, D L -- Mistrot, C A -- Hardwick, K G -- Hwang, E S -- Amon, A -- Murray, A W -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1041-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cadherins ; Calcium-Binding Proteins/metabolism ; *Carrier Proteins ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Damage ; DNA Replication ; Fungal Proteins/chemistry/*metabolism ; Ligases/metabolism ; Mad2 Proteins ; *Mitosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/*cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...