ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-12
    Description: Developing a human immunodeficiency virus (HIV) vaccine is critical to end the global acquired immunodeficiency syndrome (AIDS) epidemic, but many question whether this goal is achievable. Natural immunity is not protective, and despite immunogenicity of HIV vaccine candidates, human trials have exclusively yielded disappointing results. Nevertheless, there is an indication that success may be possible, but this will be dependent on understanding the antiviral immune response in unprecedented depth to identify and engineer the types of immunity required. Here we outline fundamental immunological questions that need to be answered to develop a protective HIV vaccine, and the immediate need to harness a much broader scientific community to achieve this goal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Virgin, Herbert W -- Walker, Bruce D -- England -- Nature. 2010 Mar 11;464(7286):224-31. doi: 10.1038/nature08898.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Washington University School of Medicine and Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Disease Research, Campus Box 8118, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA. virgin@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220841" target="_blank"〉PubMed〈/a〉
    Keywords: *AIDS Vaccines ; Acquired Immunodeficiency Syndrome/*immunology/prevention & control ; Animals ; B-Lymphocytes/immunology ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; HIV/*immunology ; HIV Antibodies/immunology ; Humans ; Mucous Membrane/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoggins, John W -- MacDuff, Donna A -- Imanaka, Naoko -- Gainey, Maria D -- Shrestha, Bimmi -- Eitson, Jennifer L -- Mar, Katrina B -- Richardson, R Blake -- Ratushny, Alexander V -- Litvak, Vladimir -- Dabelic, Rea -- Manicassamy, Balaji -- Aitchison, John D -- Aderem, Alan -- Elliott, Richard M -- Garcia-Sastre, Adolfo -- Racaniello, Vincent -- Snijder, Eric J -- Yokoyama, Wayne M -- Diamond, Michael S -- Virgin, Herbert W -- Rice, Charles M -- K01 DK095031/DK/NIDDK NIH HHS/ -- R00 AI095320/AI/NIAID NIH HHS/ -- R01 AI032972/AI/NIAID NIH HHS/ -- R01 AI091707/AI/NIAID NIH HHS/ -- R01 AI102597/AI/NIAID NIH HHS/ -- R01 AI104972/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Sep 3;525(7567):144. doi: 10.1038/nature14555. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153856" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-10
    Description: Mycobacterium tuberculosis, a major global health threat, replicates in macrophages in part by inhibiting phagosome-lysosome fusion, until interferon-gamma (IFNgamma) activates the macrophage to traffic M. tuberculosis to the lysosome. How IFNgamma elicits this effect is unknown, but many studies suggest a role for macroautophagy (herein termed autophagy), a process by which cytoplasmic contents are targeted for lysosomal degradation. The involvement of autophagy has been defined based on studies in cultured cells where M. tuberculosis co-localizes with autophagy factors ATG5, ATG12, ATG16L1, p62, NDP52, BECN1 and LC3 (refs 2-6), stimulation of autophagy increases bacterial killing, and inhibition of autophagy increases bacterial survival. Notably, these studies reveal modest (~1.5-3-fold change) effects on M. tuberculosis replication. By contrast, mice lacking ATG5 in monocyte-derived cells and neutrophils (polymorponuclear cells, PMNs) succumb to M. tuberculosis within 30 days, an extremely severe phenotype similar to mice lacking IFNgamma signalling. Importantly, ATG5 is the only autophagy factor that has been studied during M. tuberculosis infection in vivo and autophagy-independent functions of ATG5 have been described. For this reason, we used a genetic approach to elucidate the role for multiple autophagy-related genes and the requirement for autophagy in resistance to M. tuberculosis infection in vivo. Here we show that, contrary to expectation, autophagic capacity does not correlate with the outcome of M. tuberculosis infection. Instead, ATG5 plays a unique role in protection against M. tuberculosis by preventing PMN-mediated immunopathology. Furthermore, while Atg5 is dispensable in alveolar macrophages during M. tuberculosis infection, loss of Atg5 in PMNs can sensitize mice to M. tuberculosis. These findings shift our understanding of the role of ATG5 during M. tuberculosis infection, reveal new outcomes of ATG5 activity, and shed light on early events in innate immunity that are required to regulate disease pathology and bacterial replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimmey, Jacqueline M -- Huynh, Jeremy P -- Weiss, Leslie A -- Park, Sunmin -- Kambal, Amal -- Debnath, Jayanta -- Virgin, Herbert W -- Stallings, Christina L -- GM007067/GM/NIGMS NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):565-9. doi: 10.1038/nature16451. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics ; Dendritic Cells/immunology/metabolism ; Female ; Immunity, Innate/immunology ; Interferon-gamma/deficiency/immunology ; Macrophages, Alveolar/immunology/metabolism ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/*metabolism ; *Mycobacterium tuberculosis/immunology/physiology ; Neutrophils/*immunology/metabolism ; Tuberculosis/*immunology/microbiology/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-18
    Description: The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control. In many cases, the microbiota is the presumed cause of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice. In conventionally raised mice, the microbiome is transmitted from the dam. Here we show that microbially driven dichotomous faecal immunoglobulin-A (IgA) levels in wild-type mice within the same facility mimic the effects of chromosomal mutations. We observe in multiple facilities that vertically transmissible bacteria in IgA-low mice dominantly lower faecal IgA levels in IgA-high mice after co-housing or faecal transplantation. In response to injury, IgA-low mice show increased damage that is transferable by faecal transplantation and driven by faecal IgA differences. We find that bacteria from IgA-low mice degrade the secretory component of secretory IgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose faecal IgA as one marker of microbial variability and conclude that co-housing and/or faecal transplantation enables analysis of progeny from different dams.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moon, Clara -- Baldridge, Megan T -- Wallace, Meghan A -- Burnham, Carey-Ann D -- Virgin, Herbert W -- Stappenbeck, Thaddeus S -- AI08488702/AI/NIAID NIH HHS/ -- DK7161907/DK/NIDDK NIH HHS/ -- P30 DK052574/DK/NIDDK NIH HHS/ -- P30AR048335/AR/NIAMS NIH HHS/ -- P30DK052574/DK/NIDDK NIH HHS/ -- R01 DK071619/DK/NIDDK NIH HHS/ -- R01 DK097079/DK/NIDDK NIH HHS/ -- R01 DK101354/DK/NIDDK NIH HHS/ -- R01 OD011170/OD/NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32AI007163/AI/NIAID NIH HHS/ -- T32CA009547/CA/NCI NIH HHS/ -- England -- Nature. 2015 May 7;521(7550):90-3. doi: 10.1038/nature14139. Epub 2015 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686606" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-20
    Description: Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Congcong -- Bassik, Michael C -- Moresi, Viviana -- Sun, Kai -- Wei, Yongjie -- Zou, Zhongju -- An, Zhenyi -- Loh, Joy -- Fisher, Jill -- Sun, Qihua -- Korsmeyer, Stanley -- Packer, Milton -- May, Herman I -- Hill, Joseph A -- Virgin, Herbert W -- Gilpin, Christopher -- Xiao, Guanghua -- Bassel-Duby, Rhonda -- Scherer, Philipp E -- Levine, Beth -- 1P01 DK0887761/DK/NIDDK NIH HHS/ -- P01 DK088761/DK/NIDDK NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA112023/CA/NCI NIH HHS/ -- R01 DK055758/DK/NIDDK NIH HHS/ -- R0I AI084887/AI/NIAID NIH HHS/ -- R0I HL080244/HL/NHLBI NIH HHS/ -- R0I HL090842/HL/NHLBI NIH HHS/ -- RC1 DK086629/DK/NIDDK NIH HHS/ -- RCI DK086629/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 18;481(7382):511-5. doi: 10.1038/nature10758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Autophagy Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22258505" target="_blank"〉PubMed〈/a〉
    Keywords: Adiponectin/blood ; Animals ; Apoptosis Regulatory Proteins/genetics/metabolism ; Autophagy/drug effects/genetics/*physiology ; Cells, Cultured ; Dietary Fats/adverse effects ; Food Deprivation/physiology ; Gene Knock-In Techniques ; Glucose/*metabolism ; Glucose Intolerance/chemically induced/prevention & control ; Glucose Tolerance Test ; *Homeostasis/drug effects ; Leptin/blood ; Male ; Mice ; Mice, Transgenic ; Muscle, Skeletal/cytology/drug effects/*metabolism ; Mutation ; Myocardium/cytology/*metabolism ; Phosphorylation/genetics ; Physical Conditioning, Animal/*physiology ; Physical Endurance/genetics/physiology ; Physical Exertion/genetics/physiology ; Protein Binding/genetics ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Running/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-21
    Description: Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy - the 'autophagy proteins' - orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levine, Beth -- Mizushima, Noboru -- Virgin, Herbert W -- R01 AI054483/AI/NIAID NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- R01 CA096511/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA109618-07/CA/NCI NIH HHS/ -- U54 AI057156/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jan 20;469(7330):323-35. doi: 10.1038/nature09782.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9113, USA. beth.levine@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*immunology/physiology ; Cell Membrane/metabolism ; Humans ; Immunity/*immunology/physiology ; Immunity, Innate/immunology/physiology ; Infection/immunology/microbiology/parasitology/virology ; Inflammation/*immunology/microbiology/*pathology ; Phagosomes/immunology/microbiology/parasitology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-01
    Description: The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat-beclin 1-derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef-is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat-beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788641/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788641/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoji-Kawata, Sanae -- Sumpter, Rhea -- Leveno, Matthew -- Campbell, Grant R -- Zou, Zhongju -- Kinch, Lisa -- Wilkins, Angela D -- Sun, Qihua -- Pallauf, Kathrin -- MacDuff, Donna -- Huerta, Carlos -- Virgin, Herbert W -- Helms, J Bernd -- Eerland, Ruud -- Tooze, Sharon A -- Xavier, Ramnik -- Lenschow, Deborah J -- Yamamoto, Ai -- King, David -- Lichtarge, Olivier -- Grishin, Nick V -- Spector, Stephen A -- Kaloyanova, Dora V -- Levine, Beth -- K08 AI099150/AI/NIAID NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 GM066099/GM/NIGMS NIH HHS/ -- R01 GM079656/GM/NIGMS NIH HHS/ -- R01 GM094575/GM/NIGMS NIH HHS/ -- R01 NS050199/NS/NINDS NIH HHS/ -- R01 NS077111/NS/NINDS NIH HHS/ -- R01 NS084912/NS/NINDS NIH HHS/ -- R0I DK083756/DK/NIDDK NIH HHS/ -- R0I DK086502/DK/NIDDK NIH HHS/ -- R0I GM066099/GM/NIGMS NIH HHS/ -- R0I GM079656/GM/NIGMS NIH HHS/ -- R0I NS063973/NS/NINDS NIH HHS/ -- R0I NS077874/NS/NINDS NIH HHS/ -- RC1 DK086502/DK/NIDDK NIH HHS/ -- T32 GM008297/GM/NIGMS NIH HHS/ -- U54 AI057156/AI/NIAID NIH HHS/ -- U54AI057156/AI/NIAID NIH HHS/ -- U54AI057160/AI/NIAID NIH HHS/ -- Cancer Research UK/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Feb 14;494(7436):201-6. doi: 10.1038/nature11866. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364696" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis Regulatory Proteins/*chemistry/metabolism/pharmacology/*therapeutic use ; Autophagy/*drug effects ; Cell Membrane Permeability ; Cells, Cultured ; Chikungunya virus/drug effects ; HIV-1/drug effects/metabolism/physiology ; HeLa Cells ; Humans ; Macrophages/cytology ; Membrane Proteins/*chemistry/metabolism/pharmacology/*therapeutic use ; Mice ; Molecular Sequence Data ; Peptide Fragments/*chemistry/metabolism/*pharmacology ; Recombinant Fusion Proteins/chemistry/metabolism/pharmacology ; Virus Replication/drug effects ; West Nile virus/drug effects ; nef Gene Products, Human Immunodeficiency Virus/metabolism ; tat Gene Products, Human Immunodeficiency Virus/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-28
    Description: Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine gamma-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-gamma (IFNgamma) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNgamma reactivated latent murine gamma-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reese, T A -- Wakeman, B S -- Choi, H S -- Hufford, M M -- Huang, S C -- Zhang, X -- Buck, M D -- Jezewski, A -- Kambal, A -- Liu, C Y -- Goel, G -- Murray, P J -- Xavier, R J -- Kaplan, M H -- Renne, R -- Speck, S H -- Artyomov, M N -- Pearce, E J -- Virgin, H W -- AI032573/AI/NIAID NIH HHS/ -- AI084887/AI/NIAID NIH HHS/ -- CA119917/CA/NCI NIH HHS/ -- CA164062/CA/NCI NIH HHS/ -- CA52004/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI032573/AI/NIAID NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- R01 AI095282/AI/NIAID NIH HHS/ -- R01 CA052004/CA/NCI NIH HHS/ -- R01 CA119917/CA/NCI NIH HHS/ -- R01 CA164062/CA/NCI NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):573-7. doi: 10.1126/science.1254517. Epub 2014 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Emory University Vaccine Center, Atlanta, GA 30322, USA. ; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA. ; Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24968940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gammaherpesvirinae/genetics/*physiology ; Gene Expression Regulation, Viral ; Herpesvirus 8, Human/genetics/*physiology ; Humans ; Interferon-gamma/*immunology/pharmacology ; Interleukin-4/*metabolism/pharmacology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Nematospiroides dubius/immunology ; Ovum/immunology ; Promoter Regions, Genetic ; STAT6 Transcription Factor/*metabolism ; Schistosoma mansoni/*immunology ; Schistosomiasis mansoni/*immunology ; Strongylida Infections/immunology ; Virus Activation/drug effects/genetics/*physiology ; Virus Latency/physiology ; Virus Replication/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-02
    Description: The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osborne, Lisa C -- Monticelli, Laurel A -- Nice, Timothy J -- Sutherland, Tara E -- Siracusa, Mark C -- Hepworth, Matthew R -- Tomov, Vesselin T -- Kobuley, Dmytro -- Tran, Sara V -- Bittinger, Kyle -- Bailey, Aubrey G -- Laughlin, Alice L -- Boucher, Jean-Luc -- Wherry, E John -- Bushman, Frederic D -- Allen, Judith E -- Virgin, Herbert W -- Artis, David -- 095831/Wellcome Trust/United Kingdom -- 2-P30 CA016520/CA/NCI NIH HHS/ -- 5T32A100716334/PHS HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI082630/AI/NIAID NIH HHS/ -- AI083022/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- F32 AI085828/AI/NIAID NIH HHS/ -- F32-AI085828/AI/NIAID NIH HHS/ -- HHSN272201300006C/PHS HHS/ -- K08 DK097301/DK/NIDDK NIH HHS/ -- K08-DK097301/DK/NIDDK NIH HHS/ -- MR/J001929/1/Medical Research Council/United Kingdom -- P01 AI106697/AI/NIAID NIH HHS/ -- P30-AI045008/AI/NIAID NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- R01 AI 084887/AI/NIAID NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32-AI007532/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):578-82. doi: 10.1126/science.1256942. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Universite Paris Descartes, Paris, France. ; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. dartis@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082704" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/immunology ; Caliciviridae Infections/*immunology ; Coinfection/*immunology/microbiology/parasitology ; Gastroenteritis/*immunology/virology ; Germ-Free Life ; *Immunomodulation ; Intestines/immunology/microbiology/virology ; Lectins/*immunology ; Macrophage Activation ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Microbiota/*immunology ; Norovirus/*immunology ; Trichinella/*immunology ; Trichinellosis/*immunology ; beta-N-Acetylhexosaminidases/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...