ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (1)
  • eLife Sciences Publications  (1)
  • 2015-2019  (2)
  • 1
    Publication Date: 2015-05-19
    Description: Copy number variants (CNVs) play important roles in a number of human diseases and in pharmacogenetics. Powerful methods exist for CNV detection in whole genome sequencing (WGS) data, but such data are costly to obtain. Many disease causal CNVs span or are found in genome coding regions (exons), which makes CNV detection using whole exome sequencing (WES) data attractive. If reliably validated against WGS-based CNVs, exome-derived CNVs have potential applications in a clinical setting. Several algorithms have been developed to exploit exome data for CNV detection and comparisons made to find the most suitable methods for particular data samples. The results are not consistent across studies. Here, we review some of the exome CNV detection methods based on depth of coverage profiles and examine their performance to identify problems contributing to discrepancies in published results. We also present a streamlined strategy that uses a single metric, the likelihood ratio, to compare exome methods, and we demonstrated its utility using the VarScan 2 and eXome Hidden Markov Model (XHMM) programs using paired normal and tumour exome data from chronic lymphocytic leukaemia patients. We use array-based somatic CNV (SCNV) calls as a reference standard to compute prevalence-independent statistics, such as sensitivity, specificity and likelihood ratio, for validation of the exome-derived SCNVs. We also account for factors known to influence the performance of exome read depth methods, such as CNV size and frequency, while comparing our findings with published results.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-14
    Description: Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics.
    Electronic ISSN: 2050-084X
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...