ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-253X
    Keywords: Embryogenesis ; cavitation ; Na ; K-ATPase ; mRNA ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: NaK-ATPase is a plasma membrane enzyme that plays a critical role in eutherian blastocoel formation (cavitation) by pumping Na+ into the extracellular space enclosed by the trophectoderm. Previous experiments with the mouse had shown that the α (catalytic) subunit of the enzyme becomes detectable by immunocyto-chemistry in the late morula, just prior to the onset of cavitation. In the present study we have used cDNAs corresponding to three mRNA isoforms of the α subunit and a β subunit to determine which genes are expressed during preimplantation development and to explore the timing of their expression. Of the three α subunit cDNAs tested by Northern blot hybridization with blastocyst RNA, only α1 produced a hybridization signal, recognizing a single mRNA about 4 kb in length. This mRNA is relatively abundant in zygotes but barely detectable by the 2-cell stage and then accumulates steadily thereafter to reach its preimplantation maximum in blastocysts. The β1 cDNA detected mRNA of about 2.6-2.8 kb. This mRNA is present in zygotes but could not be detected in 2-, 4-, or 8- cell stages; it is present at a low level in late morulae and is abundant in blastocysts. The temporal profile of accumulation of β1 mRNA thus matches more closely than does α1 the timing of appearance of the catalytic subunit. This suggests that the β subunit may regulate production of the holoenzyme and hence the timing of cavitation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 33 (1992), S. 492-504 
    ISSN: 1040-452X
    Keywords: Preimplantation development ; Compaction ; Cavitation ; Blastocyst ; Na/K-ATPase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Preimplantation development encompasses the “free”-living period of mammalian embryo-genesis, which culminates in the formation of a fluid-filled structure, the blastocyst. Cavitation (blastocyst formation) is accompanied by the expression of a novel set of gene products that contribute directly to the attainment of cell polarity with the trophectoderm, which is both the first epithelium of development and the outer cell layer encircling the inner cell mass of the blastocyst. Several of these gene products have been identified and include the tight junction (ZO-1), Na/K-ATPase (α and β subunits), uvomorulin, gap junction (connexin43), and growth factors such as transforming growth factor-α (TGF-α) and epidermal growth factor (EGF). This review will examine the role(s) of each of these gene products during the onset and progression of blastocyst formation. The trophectodermal tight junctional permeability seal regulates the leakage of blastocoel fluid and also assists in the maintenance of a polarized Na/K-ATPase distribution to the basolateral plasma membrane domain of the mural trophectoderm. The polarized distribution of the Na/K-ATPase plays an integral role in the establishment of a trans-trophectoderm Na+ gradient, which drives the osmotic accumulation of water across the epithelium into the nascent blastocoelic cavity. The cell adhesion provided by uvomorulin is necessary for the establishment of the tight junctional seal, as well as the maintenance of the polarized Na/K-ATPase distribution. Growth factors such as TGF-α and EGF stimulate an increase in the rate of blastocoel expansion, which could, in part, be mediated by secondary messengers that result in an increase in Na/K-ATPase activity. Insight into the mechanism of cavitation has, therefore, directly linked blastocyst formation to trophectoderm cell differentiation, which arises through fundamental cell biological processes that are directly involved in the attainment of epithelial cell polarity. © 1992 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 31 (1992), S. 87-95 
    ISSN: 1040-452X
    Keywords: Mammalian development ; mRNA phenotyping ; RT-PCR ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-α) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-β2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-α, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 31 (1992), S. 231-240 
    ISSN: 1040-452X
    Keywords: Maternal mRNA ; mRNA processing ; Mammalian development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: This study describes the localization of the U2 small nuclear RNA (snRNA) and the major U snRNA group ribonucleoproteins (snRNPs) during bovine preimplantation development. In vitro maturation, fertilization, and oviductal epithelial cell coculture methods were employed to produce several developmental series totalling over 2,000 preimplantation-stage bovine oocytes and embryos. These oocytes and preimplantation embryos were processed for in situ hybridization, immunofluorescence and Northern blotting methods. The U2 snRNA and the major U group snRNPS were localized initially over the germinal vesicle (GV) of preovulatory oocytes but following GV breakdown were released throughout the ooplasm. They subsequently reassociated with both pronuclei during fertilization. From the two-cell to the blastocyst stages, the U2 snRNA and U snRNPs were localized to the interphase nucleus of each blastomere. The levels of U2 snRNA throughout bovine preimplantation development were determined by probing a Northern blot containing total RNA isolated from the following preimplantation bovine embryo stages: one to two cell, eight to 16 cell, early morula (〉32 cell), and late morula/early blastocysts. The levels of U2 snRNA remained constant between the one-cell and eight-to 16-cell bovine embryo stages but increased 4.4-fold between the eight- to 16-cell stage and the late morula/early blastocyst stages. The results suggest that a maternal pool of snRNAs is maintained in mammalian preimplantation embryos regardless of the duration of maternal control of development.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 26 (1990), S. 90-100 
    ISSN: 1040-452X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 30 (1991), S. 330-338 
    ISSN: 1040-452X
    Keywords: Oocyte ; Maturation ; Bovine Embryos ; Oviductal Cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A total of 901 cumulus-oocyte complexes (COCs) were collected from bovine ovaries obtained at a local abattoir. COCs randomly assigned to Treatment I (n=451), were cultured in TCM-199 + 10% fetal bovine serum (FBS) and hormones, while oocytes in Treatment II (n=450) were cultured in TCM-199 + 20% estrous cow serum (ECS). Assessment of maturation revealed that 91.3% (42/46) of oocytes in Treatment I had reached metaphase II of meiosis, which was greater (P 〈0.05) than the 73.3% (33/45) in Treatment II. Following in vitro fertilization, 203 oocytes from Treatment I were co-cultured on bovine granulosa cells (Treatment IA) while the remaining 202 oocytes were co-cultured on bovine oviductal cells (Treatment IB). Similarly, 203 oocytes from Treatment II were co-cultured on granulosa cells (Treatment IIA) or oviductal cells (Treatment IIB, n = 202). Co-culture was maintained for 8 days. The proportion of cleaved zygotes was higher (P 〈0.05) in Treatment IB (86.6%) compared to Treatments IA (78.8%), IIA (58.1%), and IIB (64.8%). The proportion of cleaved zygotes that progressed beyond the 16-cell stage was also greater (P 〈0.001) in Treatment IB (71.4%) compared to Treatments IA (50.0%), IIA (35.4%) and IIB (55.8%). Treatment IB also produced the highest proportion of blastocysts (P〈0.0001) (41.1%) versus 24.6% (IA), 11.3% (IIA) and 18.3% (IIB). The proportion of day 6 morulae that progressed to form day 8 blastocysts was similar for both co-culture treatments (IA, 70.1%; IB 70.2%; IIA, 51.5%; IIB 50.8%) and varied only between in vitro maturation groups. Results indicate that the combination of in vitro maturation in TCM-99 + 10% FBS and hormones followed by co-culture on oviductal monolayers is a superior system for the production of early bovine embryos.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 12 (1990), S. 67-73 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the 4 1/2 to 5 days between fertilization and implantation, the mouse conceptus must gain the abilities to implant and produce an embryo. Each of these is the sole developmental responsibility of one of two cell types forming the blastocyst, trophectoderm and inner cell mass (ICM), respectively. Trophectoderm is a polarized transporting epithelium while the ICM is an aggregate of non-epithelial pluripotent stem cells. These two cell types originate from the division of polar blastomeres when their cleavage furrows parallel their apical surfaces. Blastomeres polarize in response to asymmetric cell-cell contact, and understanding the mechanism of this induction is regarded as the key to understanding the origin of trophectoderm and ICM. Here we propose a model based on transcellular ion current loops for the induction of cell polarity during the development of the first epithelium, trophectoderm.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...