ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 163 (1995), S. 312-320 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have investigated the promoter element(s) required by the cell cycle regulated FO108 human histone H4 gene for control of gene expression during adipocyte proliferation and differentiation. Stable 3T3L1 cell lines were established that express fusion genes in which the histone H4 promoter is joined to chloramphenicol acetyltransferase (cat) as a reporter gene. Expression of the H4CAT fusion genes was monitored in proliferating and confluent 3T3L1 preadipocytes and in differentiating 3T3L1 adipocytes. The results indicate that the H4 cell cycle element (CCE), which mediates S phase-specific stimulation of H4 gene transcription, is not required for transcriptional regulation during differentiation. Instead, a minimal H4 promoter (nucleotides -46 to -11) is sufficient to mediate the complex transcriptional response of H4 gene expression observed during the process of adipocyte differentiation of 3T3L1 cells. In addition, the data suggest that down-regulation of histone gene expression during cellular differentiation may be mediated by passive inactivation of the promoter due to loss of positive regulatory factor(s). © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of the vitamin K dependent proteins, osteocalcin which is bone specific and matrix Gla protein (MGP) found in many tissues, has been studied by inhibition of synthesis of their characteristic amino acid, γ-carboxyglutamic acid (Gla) with the anticoagulant sodium warfarin. The effect of sodium warfarin on expression of these proteins, and other phenotypic markers of bone and cartilage during cellular differentiation and development of tissue extracellular matrix, was examined in several model systems. Parameters assayed include cell growth (reflected by histone gene expression) and collagen types I and II, osteopontin, alkaline phosphatase, and mineralization. Studies were carried out in calvarial bone organ cultures, normal diploid rat osteoblast and chondrocyte cultures, and rat osteosarcoma cell lines ROS 17/2.8 and 25/1. In normal diploid cells, warfarin consistently stimulated cell proliferation (twofold). In osteoblast cultures, MGP mRNA levels were generally increased (three to tenfold). Notably, MGP mRNA levels were not affected in chondrocyte cultures, either with chronic or acute warfarin treatments. Osteocalcin mRNA levels and synthesis were decreased up to 50% in ROS 17/2.8 cells and in chronically treated (1 and 5 μg/ml sodium warfarin) rat osteoblast cultures after 22 days. Early stages of osteoblast phenotype development from the proliferation period to initial tissue formation (nodules) appeared unaffected; while after day 14, further growth and mineralization of the nodule areas were significantly decreased in warfarin-treated cultures. In summary, warfarin has opposing effects on the expression of two vitamin K dependent proteins, MGP and osteocalcin, in osteoblast cultures and MGP is regulated differently between cartilage and bone as reflected by cellular mRNA levels. Additionally, warfarin effects expression of nonvitamin K dependent proteins which may reflect the influence of warfarin on endoplasmic reticulum associated enzymes. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study examines the mechanism by which TGF-β1, an important mediator of cell growth and differentiation, blocks the differentiation of normal rat diploid fetal osteoblasts in vitro. We have established that the inability for pre-osteoblasts to differentiate is associated with changes in the expression of cell growth, matrix forming, and bone related genes. These include histone, jun B, c-fos, collagen, fibronectin, osteocalcin, alkaline phosphatase, and osteopontin. Morphologically, the TGF-β1-treated osteoblasts exhibit an elongated, spread shape as opposed to the characteristic cuboidal appearance during the early stages of growth. This is followed by a decrease in the number of bone nodules formed and the amount of calcium deposition. These effects on differentiation can occur without dramatic changes in cell growth if TGF-β1 is given for a short time early in the proliferative phase. However, continuous exposure to TGF-β1 leads to a bifunctional growth response from a negative effect during the proliferative phase to a positive growth effect during the later matrix maturation and mineralization phases of the osteoblast developmental sequence. Extracellular matrix genes, fibronectin, osteopontin and α1(I) collagen, are altered in their expression pattern which may provide an aberrant matrix environment for mineralization and osteoblast maturation and potentiate the TGF-β1 response throughout the course of osteoblast differentiation. The initiation of a TGF-β1 effect on cell growth and differentiation is restricted to the proliferative phase of the culture before the cells express the mature osteoblastic phenotype. Second passage cells that are accelerated to differentiate by the addition of dexamethasone or by seeding cultures at a high density are refractory to TGF-β1. These in vitro results indicate that TGF-β1 exerts irreversible effects at a specific stage of osteoblast phenotype development resulting in a potent inhibition of osteoblast differentiation at concentrations from 0.1 ng/ml. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle and growth control of the DNA binding and transactivation functions of regulatory factors provides a direct mechanism by which cells may coordinate transcription of a multitude of genes in proliferating cells. The promoters of human DNA replication dependent histone H4, H3, and H1 genes interact with at least seven distinct proteins. One of these proteins is a proliferation-specific nuclear factor, HiNF-D, that interacts with a key cis-regulatory element (H4-Site II; 41 bp) present in H4 genes. Here we describe binding sites for HiNF-D in the promoters of H3 and H1 genes using cross-competition, deletion analysis, and methylation interference assays, and we show that HiNF-D recognizes intricate arrangements of at least two sequence elements (CA- and AG-motifs). These recognition motifs are irregularly dispersed and distantly positioned in the proximal promoters (200 bp) of both the H3 and H1 genes. In all cases, these motifs either overlap or are in close proximity to other established transcriptional elements, including ATF and CCAAT sequences. Although HiNF-D can interact with low affinity to a core recognition domain, auxiliary elements in both the distal and proximal portions of each promoter cooperatively enhance HiNF-D binding. Thus, HiNF-D appears to bridge remote regulatory regions, which may juxtapose additional trans-activating proteins interacting within histone gene promoters. Consistent with observations in many cell culture systems, the interactions of HiNF-D with the H4, H3, and H1 promoters are modulated in parallel during the cessation of proliferation in both osteosarcoma cells and normal diploid osteoblasts, and these events occur in conjunction with concerted changes in histone gene expression. Thus, HiNF-D represents a candidate participant in coordinating transcriptional control of several histone gene classes. © 1994 wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle control of histone H4 gene transcription is mediated by the multipartite promoter domain H4-Site II, which supports transcriptional activation at the G1/S phase transition and modulates basal H4 gene transcription. Proliferation-specific transcription is determined by the integrated activities of three distinct promoter factors interacting with H4-Site II: the interferon regulatory factor IRF-2 (synonymous with HiNF-M), HiNF-D (a complex between the homeodomain protein CDP-cut and the cell cycle mediators CDC2, cyclin A and pRB), as well as HiNF-P/H4TF-2. However, the contribution of HiNF-D to the enhancement and/or suppression of H4 gene transcription at specific cell cycle stages remains to be established. We used a panel of synchronized HeLa S3 cell lines containing stably integrated H4 promoter/CAT reporter gene constructs with mutations in H4-Site II. The temporal regulation of CAT mRNA accumulation under the control of the H4 promoter was analyzed by RNase protection analysis. Our main finding is that mutation of the HiNF-D/CDP-cut binding site alters the timing of histone gene activation during the cell cycle. Furthermore, our data indicate that HiNF-P/H4TF-2 may functionally compensate for HiNF-M/IRF-2 at Site II to regulate histone H4 gene transcription in HeLa S3 cervical carcinoma cells during early S phase. We postulate that HiNF-D (CDP-cut/cyclin A/CDC2/pRB containing complex) promotes HiNF-M/IRF-2 (and/or HiNF-P/H4TF-2) dependent histone H4 gene activation at the G1/S phase transition and attenuates H4 gene transcription at later cell cycle stages. The mechanistic division in the gene regulatory functions of the three H4-Site II binding proteins may ensure that histone H4 gene expression is stringently coupled with the onset of S phase in response to growth factor/cytokine-induced cell cycle progression. J. Cell. Physiol. 177:453-464, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have evaluated the regulation of expression of the poly(ADP-ribose) polymerase gene during cell growth and replication. In a synchronized population of HeLa cells or in serum-stimulated WI-38 cells, steady-state levels of the polymerase mRNA were highest at late S and S-G2 phases and negligible in early S phase. Transcription did not solely account for the significant increase in the mRNA levels observed in late S phase by Northern analysis. The stability of the mRNA was dependent upon the percent proliferating cells in the culture. Accordingly, polymerase mRNA from cells in early exponential phase was significantly more stable than from cells in stationary phase of asynchronous growth. To clarify these observations, we utilized a novel heterologous expression system that involved murine 3T3 cells transfected with a human poly(ADP-ribose) polymerase cDNA under the control of a non-cell cycle-specific promoter. Cells were synchronized, and a comparison was made of the endogenous (murine) and exogenous (human) polymerase mRNA levels. Both the endogenous and the exogenous mRNA were specifically stabilized by the same mechanisms and only during late S phase; therefore, we concluded that mRNA pools for the polymerase are regulated at the post-transcriptional level. The heterologous expression system confirmed that the post-transcriptional regulation system in the mouse cells can recognize and faithfully regulate the human cDNA in response to the murine cell cycle signals. More importantly, the presence of extra copies (human) of the polymerase gene did not provide an increased amount of the total polymerase mRNA or protein and, in fact, the sum of the endogenous and exogenous mRNA in the transfected cells was approximately the same as the level of endogenous transcript in the control cells. This suggested that there might be a limit to the amount of polymerase protein accumulating in the cellular pool and thus levels of poly(ADP-ribose) polymerase may be autoregulated.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 247-265 
    ISSN: 0197-8462
    Keywords: proliferation ; differentiation ; cell phenotype ; tissue culture ; molecular biology ; cell biology ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The potential biological effects of electric and/or magnetic fields on cells and tissues must be addressed systematically within a context of perturbations in cell cycle control. Such studies should not be pursued in an isolated manner but as a component of the fundamental relationship between proliferation and differentiation, the multi-step process by which structural and functional properties of specialized cells, tissues, and organs progressively develop. It is necessary to quantitatively establish the influence of electric and magnetic fields on the integrated signalling mechanisms which transduce regulatory information for 1) control of the proliferative process and 2) down-regulation of proliferation associated with the initiation of gene expression that mediates the development and maintenance of phenotypic properties characteristic of differentiated cells. We will present an overview of our current understanding of regulatory mechanisms that control proliferation and cell specialization in normal diploid cells with emphasis on rate limiting steps that may be the basis for biological perturbations by electric and magnetic fields. Addressing such questions in normal diploid cells is essential since the loss of growth control in transformed and tumor cells is accompanied by an abrogation of developmental regulatory mechanisms that are functionally coupled to proliferation. 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 44 (1990), S. 1-17 
    ISSN: 0730-2312
    Keywords: histone genes ; gene structure ; gene expression ; histone mRNA ; rat liver ; rat testis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 6.86 kb rat genomic DNA fragment containing the testis-specific histone H1t gene and the histone H4t gene has been sequenced. S1-nuclease protection analyses of total cellular RNA from rat liver and testis showed that histone H1t mRNA was present only in testis. Examination of various highly enriched populations of rat testis cell types revealed that H1t mRNA was found exclusively in a fraction enriched in pachytene spermatocytes. When protein, DNA interactions within the proximal promoter region of the histone H1t gene were examined by electrophoretic mobility shift assays, only minor differences were found in mobility shift patterns of the H1t promoter in assays comparing binding of nuclear proteins from pachytene spermatocytes and early spermatids. However, major differences in binding were observed upon comparing nuclear proteins from rat pachytene spermatocytes to liver. Comparison of binding patterns of rat testis, rat hepatoma H4 cells, HeLa cells, and COS-1 cells also revealed dramatic differences. Transcriptional activity of the histone H1t promoter was examined by measuring H1t promoted chloramphenicol acetyltransferase (CAT) mRNA levels in transient experession assays in transfected rat hepatoma H4 cells, HeLa cells, and COS-1 cells. These assays revealed that the histone H1t promoted CAT gene functioned poorly in HeLa cells and COS-1 cells compared to expression with the parent SV40 promoted vector pSV2CAT. The H1t promoted CAT gene apparently did not work at all in transfected rat hepatoma H4 cells, which is consistent with testis germinal cell specific expression of the histone H1t gene.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: TGFβ ; extracellular matrix ; slot blot analysis ; DBP ; RNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Subcutaneous implatation of demineralized bone particles (DBP) into rats induces the formation of a bone ossicle by a tightly controlled sequence of chondro- and osteo-inductive events which are directly comparable to those which occur in normal endochondral bone development. Although the morphological and biochemical sequence associated with endochondral bone formation in this model has been well characterized, to date little information is available as to the gene regulation by which these events occur. To examine the expression of genes in this system, RNA was isolated from implants every 2 days over a time course spanning 3 to 19 days after implantation of DBP into rats. Cellular levels of mRNA transcripts of cell-growth-regulated and tissue-specific genes were examined by slot blot analysis and compared to the morphological changes occuring during formation of the ossicle. Analysis of the mRNA levels of histone H4 and c-myc, markers of proliferative activity, revealed several periods of actively proliferating cells, corresponding to (1) production of fibroprogenitor cells (day 3), (2) onset of bone formation (day 9), and (3) formation of bone marrow (day 19). The mRNA levels of collagen type II, a phenotypic marker of cartilage, peaked between days 7 and 9 post-implantation, corresponding to the appearance of chondrocytes in the implant, and rapidly declined on day 11 (to 5% of maximum value) when bone formation was observed. The peak mRNA levels of collagen type I, found in fibroblasts and osteoblasts, occurred first with the onset of bone formation (days 7-10) and again during formation of bone marrow (day 19). This study has demonstrated that the temporal patterns of mRNA expression of cartilage type II and bone type I collagens coincide with the morphological sequence in this model of endochondral bone formation. Further, the mRNA levels of transforming growth factor β1 (TGFβ) were compared to those of collagen types I and II; a direct temporal correlation of TGFβ mRNA levels with that of collagen type I was found throughout the developmental time course. This observation of a tightly coupled relationship between TGFβ and type I collagen mRNA levels is consistent with a functional role for TGFβ in extracellular matrix production during in vivo bone formation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 184-196 
    ISSN: 0730-2312
    Keywords: glucocorticoid ; transcription ; mRNA stability ; histone ; differentiation ; bone development ; osteoblast ; promoter factors ; collagen ; osteosarcoma cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of dexamethasone on expression of the osteocalcin gene which encodes the most abundant non-collagenous and only reported bone-specific protein was examined in ROS 17/2.8 osteosarcoma cells which express a broad spectrum of genes related to bone formation. Consistent with previous reports, quantitation of cellular osteocalcin mRNA levels by Northern blot analysis, osteocalcin gene transcription by activity of the osteocalcin gene promoter fused to a chloramphenicol acetyl-transferase (CAT) mRNA coding sequence following transfection into ROS 17/2.8 cells, and osteocalcin biosynthesis by radioimmunoassay indicate that dexamethasone in a concentration range of 10-6 to 10-9 M only modestly modifies basal levels of osteocalcin gene expression. However, dexamethasone significantly inhibits these parameters of the vitamin D-induced upregulation of osteocalcin gene expression in both proliferating and in confluent ROS 17/2.8 cells. In this study, we observed that the extent to which abrogation of the vitamin D response occurs is dependent on basal levels of osteocalcin gene expression as reflected by a complete inhibition of the vitamin D-induced upregulation in a ROS 17/2.8K subline with low basal expression and only a partial reduction of the vitamin D stimulation in a ROS 17/2.8C subline with eightfold higher levels of basal expression. This effect of glucocorticoid appears to be at the transcriptional and post-transcriptional levels as demonstrated by a parallel decline in the cellular representation of osteocalcin mRNA, osteocalcin gene promoter activity, and osteocalcin biosynthesis. The complexity of the glucocorticoid effect on vitamin D-mediated transcriptional properties of the osteocalcin gene is indicated by persistence of sequence-specific protein-DNA interactions at two principal osteocalcin gene promoter regulatory elements, the osteocalcin (CCAAT) box which modulates basal level of transcription, and the vitamin D responsive element, where vitamin D-mediated enhancement of osteocalcin gene transcription is controlled.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...