ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 22 (1986), S. 637-647 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: We present a new finite element analysis of the linear dynamic responses of a slender fluid-structure system, namely the elasto-acoustic beam, neglecting flow and viscosity effects. Using one unknown field in the fluid, namely the ‘mass-flow’ corresponding to a cross-section mean value of the longitudinal displacement field component, an original symmetric formulation is derived which does not exhibit the usual spurious modes associated with the irrotationality constraint occurring in displacements formulations of fluid-structure problems.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 741-755 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The finite element method is used for the computation of the variational modes of the system composed of an elastic tank partially filled with a compressible liquied. We propose, on the one hand, a direct approcach based on a three field mixed variational formulation, and, on the other hand, a variational modal interaction scheme allowing the use of the acoustic eigenmodes of the liquid in a rigid motionless enclosure and the hydroelastic modes of the enclosure. Numerical results show the advantage of the second procedure.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 27 (1989), S. 271-283 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Damage generally refers to the more or less gradual development of micro-voids and micro-cracks. Damage mechanics is the modelling of these phenomena on a structural analysis scale. In this paper we first recall the non-linear behaviour models we have developed to model composite laminates. Then we present two examples of implementations of such models in a structural analysis code in order to simulate the inner-failure of a structure, or to study delamination initiation.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 1085-1114 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The problem of multilayered degenerated 3-D shell elements for which the numerical integration is performed for each ply is that of the high generation time in non-linear analysis when the number of plies is important. But these elements give accurate results for thin and moderately thick shells, so in order to reduce the generation time explicit thickness integration is investigated. We first write an expansion of the strain-displacement matrix in power series of the thickness variable in order to obtain explicit expressions of the tangent stiffness matrix and internal force vector, appearing in the non-linear formulation. Explicit expressions of non-linear stiffness matrices are presented, using the explicit integration-first approximation. Simple expressions of several matrices, sub-matrices and vectors appearing in the formulation are given here in order to obtain an important computing-time gain. Next, some numerical validation tests comparing the classical element with numerical thickness integration and this one are discussed to prove validity of this formulation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...