ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 20 (1981), S. 451-467 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A technique for the measurement of the dynamic Young's modulus E and logarithmic decrement v of protein crystals and other microscopic samples by the resonance method modified to a microscale is described. Monoclinic crystals of horse hemoglobin and sperm whale myoglobin; triclinic hen egg white lysozyme crystals, crosslinked by glutaraldehyde; and native and crosslinked needlelike lysozyme crystals were studied, as were amorphous protein films. The E of wet protein crystals is shown to be in the range (3-15) × 103 kg/cm2, v = 0.3-0.7. The crosslinking does not significantly affect the values. General elastic properties were analyzed for triclinic lysozyme crystals. No frequency dependence of E and v was found over the frequency range of 2.5-65 kHz. The temperature dependence was found to be characteristic for glassy polymers; the decrement of Young's modulus was -2.4 ± 0.1%/°C. The guanidine HCl denaturation caused a 1000-fold decrease of E, its temperature dependence becoming similar to that of rubberlike materials. Studies of pH and salt effects showed E to be influenced by ionization of the acidic groups at pH 3-4.5. A humidity decrease from 100 to 30% caused a three- to fourfold increase of E and a decrease of v. The final values of E = (40-60) × 103 kg/cm2 and v ≃ 0.1 were the same for dry crystals and amorphous films, whether crosslinked or not. These values may be attributed to the protein globular material.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 24 (1985), S. 1785-1799 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The viscoelastic properties of solid samples (crystals, amorphous films) of hen egg white lysozyme, bovine serum albumin, and sperm whale myoglobin were studied in the temperature range of 100-300 K at different hydration levels. Decreasing the temperature was shown to cause a steplike increase in the Young's modulus of highly hydrated protein samples (with water content exceeding 0.3 g/g dry weight of protein) in the temperature range of 237-251 K, followed by a large increase in the modulus in the broad temperature interval of 240-130 K, which we refer to as a mechanical glass transition.Soaking the samples in 50% glycerol solution completely removed the steplike transition without significantly affecting the glass transition. The apparent activation energy determined from the frequency dependence of the glass-transition temperature was found to be 18 kcal/mol for wet lysozyme crystals. Lowering the humidity causes both the change of the Young's modulus in response to the transition and the activation energy to decrease. The thermal expansion coefficient of amorphous protein films also indicates the glass transition at 150-170 K. The data presented suggest that the glass transition in hydrated samples is located in the surface layer of proteins and related to the immobilization of the protein groups and strongly bound water.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...