ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 40 (1991), S. 201-210 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: By relating the blocking structure of the relevant matrix of overlap-integrals to its cofactors, the Slater-Condon rules for the evaluation of an element of a matrix representation of an electronic Hamiltonian in a Slater determinant basis are generalized to the case where not all orbitals are orthogonal. This yields a set of 33 rules, which allows for an efficient implementation of the valence bond theory.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 58 (1996), S. 351-360 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ab initio valence bond calculations are performed for the three lowest states of the oxygen molecule (3Σ-g, 1Δg, and 1Σ+g). One objective of the present study was to make a contribution to previous valence bond discussions about the oxygen “double” bond. Further, we study the origin of a small barrier in the potential energy surface of the ground state. Two compact models are employed to maintain the clear picture that can be offered by the valence bond method. The first model has only the Rumer structures that are essential for bonding and a proper dissociation. The second model, in addition, has structures which represent excited atoms. These prove to be important for the dissociation energies. For both models, the orbitals are fully optimized. The spectroscopic data obtained are significantly better than are the (few) valence bond results on O2 that have been published and have the quality of multiconfiguration self-consistent field calculations in which the same valence space is used. The “hump” in the potential energy surface of the ground state is shown to arise from a spin recoupling. The free atoms correspond to a spin coupling that is incapable of describing the formation of bonds. Only at short distances, an alternative spin coupling provides bonding and the repulsive curve is converted into an attractive one. Our results on this subject support a valence bond explanation previously given by McWeeny [R. McWeeny, Int. J. Quantum Chem. Symp. 24, 733 (1990)]. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-193X
    Keywords: Pyrolysis ; Ring contraction-ring expansion ; Rearrangements ; Homolytic scission ; IGLOIII//6-31G ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: -Flash vacuum thermolysis (FVT, 1000 °C ≥ T ≥ 1200 °C) of acenaphtho[1,2-a]acenaphthylene (3, C22H12) gave the C22H12 cyclopenta-fused polycyclic aromatic hydrocarbon (CP-PAH) acenaphtho[1,2-e]acenaphthylene (4), cyclopenta[cd]perylene (5) and cyclopenta[def]benzo[hi]chrysene (6). Whereas the formation of 4 is explained by a ring contraction/ring expansion rearrangement of 3, the identification of 5 and 6 suggests that 3 also undergoes homolytic scission of a five-membered ring's Carbon-Carbon single bond furnishing the transient diradical intermediate 7. Ring closure of 7to form 8 after rotation around the Carbon-Carbon single bond of the intact five-membered ring followed by hydrogen shifts will give 6. The latter can rearrange subsequently into 5by ring contraction/ring expansion. The structural assignment of 4 and 5 was supported by independent FVT of 6,12-bis(1-chloroethenyl)chrysene (14) and 3-(1-chloroethenyl)perylene (23), respectively. FVT of 14 (900-1200 °C) gave in a consecutive process 6,12-bis(ethynyl)chrysene (15), 9-ethynylbenz[j]acephenanthrylene (16) and bis(cyclopenta[hi,qr])chrysene (17). Although at T ≥ 900 °C 17 selectively rearranges into 4 by ring contraction/ring expansion, at 1200 °C the latter is converted into 5 presumably via a diradical intermediate obtained by homolytic scission of a single Carbon-Carbon bond of a five-membered ring. FVT of 23 gave in situ 3-ethynylperylene (25), which at 1000 °C is nearly quantitatively converted into 5. The propensity of internal cyclopenta moieties to undergo homolytic scission of a five-membered ring′s Carbon-Carbon single bond was corroborated by independent FVT of benzo[k]- (11) and benzo[j]fluoranthene (12). Previously unknown thermal pathways to important (CP)-PAH combustion effluents are disclosed at T ≥ 1000 °C.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 63 (1997), S. 805-815 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A method is devised for dealing with almost linearly dependent basis sets that contain large sets of bond functions. Using the largest of such basis sets, LARSAT, the second-order Møller-Plesset polarization dispersion energy of the helium dimer is calculated to be - 17.08 K at R = 5.6 bohrs. MR-SDCI calculations, employing a set of 37 reference configurations, were performed for the helium dimer with several basis sets at 4.0 and 5.6 bohrs. Size-extensivity corrections were included to take into account the R dependency of the size-extensivity error in MR-SDCI calculations. The He2 interaction energies computed with basis LARSAT are - 10.92 K at 5.6 bohrs and 295.1 K at 4.0 bohrs. The 37-MR-SDCI calculations with basis LARSAT almost reproduce the He2 full configuration interaction (CI) interaction energies computed with the same basis, at notably smaller cost. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 805-815, 1997
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 67 (1998), S. 77-83 
    ISSN: 0020-7608
    Keywords: Cofactors ; nonorthogonal calculations ; valence bond ; valence bond self-consistent field ; VB ; VBSCF ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The calculation of matrix elements involving nonorthogonal orbitals is speeded up by recognizing the orthogonalities between orbitals, leading to generalized Slater rules. The block structure present in the overlap matrix makes an efficient evaluation of its cofactors possible. These cofactors are calculated per subblock, each with its own parity sign. An adjustment parity sign has to be evaluated, which is added to the combined local signs, to give the correct total sign for the matrix element. An algorithm for the evaluation of this adjustment sign has been developed, making an easy and correct evaluation possible. The current scheme is shown to be very efficient, but possibilities for further improvement remain.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 77-83, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...