ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0173-0835
    Keywords: Restriction landmark genomic scanning ; Spot cloning ; Restriction trapper ; Polymerase chain reaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We introduce two new methods for target cloning of DNA fragments corresponding to spots on the two-dimensional profile of restriction landmark genomic scanning (RLGS). One is a restriction trapper-based method and the other is a polymerase chain reaction (PCR) mediated method. Both are designed to select the target DNA fragments from a large amount of unlabeled background DNA fragments in the RLGS gel which produce background clones. The restriction trapper method is simple, with a cloning efficiency that is not biased by the length of the target DNA nor by its GC content. On the other hand, the PCR-mediated method is efficient for cloning DNA fragments from a small amount of starting materials. These methods provide us with powerful tools for isolating DNA clones identified by the RLGS system as interesting spots. This paper reports the precise protocols of these methods and discusses their application and usefulness.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0173-0835
    Keywords: Restriction landmark genomic scanning ; DNA methylation ; CpG island ; NotI enzyme ; Transcription ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The DNA methylation status of a large number of genomic loci is visualized simultaneously and quantitatively as two-dimensional gel spots in the newly developed restriction landmark genomic scanning with a methylation-sensitive restriction enzyme (RLGS-M). Here, we demonstrate that RLGS-M using NotI as a methylation-sensitive enzyme could also scan gene loci of mammalian genomes, since almost all of the NotI loci corresponding to randomly chosen RLGS-M spots were located near or in transcriptional units (6 out of 7 NotI-linking clones) when mouse brain genomic DNA was used. This supports the previous prediction that most NotI sites are located in CpG islands (Lindsay and Bird, Nature 1987, 327, 336-338). Furthermore, beginning with RLGS-M spots we examined how to approach their corresponding RNA messages, whose expression may be associated with methylation. We compared RLGS-M patterns among various developmental stages of the mouse brain from embryonic day 9.5 to postnatal 8 weeks or among in vitro cell lines, and detected alterations of RLGS-M spots which were due to methylation of NotI sites. Two experiments using NotI-linking clones or polymerase chain reaction (PCR) were carried out to approach to their corresponding RNA messages. Consequently, we isolated two PCR-amplified clones (# 15 and # 91) which corresponded to methylatable loci and gave positive signals to mRNA from the adult brain. Furthermore, we identified two NotI-linking clones (C211 and C198) whose corresponding NotI loci localized near or at transcriptional units and were methylated in cell lines. Thus, RLGS-M is expected to be widely applicable for the isolation of tissue-specific genes whose genomic loci are associated with DNA methylation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We have developed a new genome scanning method (restriction landmark genomic scanning (RLGS)), based on the new concept of using restriction enzyme sites as landmarks. RLGS employs direct end labeling of the genomic DNA digested with a restriction enzyme and two-dimensional electrophoresis with high-resolution. Its advantages are: (i) high-speed scanning ability, allowing simultaneous scanning of thousands of restriction landmarks; (ii) extension of the scanning field using different kinds of landmarks in an additional series of electrophoresis; (iii) application to any type of organism because of direct-labeling of restriction enzyme sites and no hybridization procedure; and (iv) reflection of the copy number of the restriction landmark by the spot intensity which enables distinction of haploid and diploid genomic DNAs. The RLGS method has various applications because it can be used to scan for physical genomic DNA states, such as amplification, deletion and methylation. The copy number of the locus of a restriction landmark can be estimated by the spot intensity to find either an amplified or deleted region. The methylation state of genomic DNA can also be discovered by use of a methylation-sensitive restriction enzyme sites as a restriction landmark (restriction landmark genomic scanning for screening methylated sites, RLGS-M). This article introduces the basic principle of RLGS and its applications to the analysis of cancer, mouse mutant DNAs and tissue-specific methylation, showing the usefulness of RLGS for a variety of biological fields.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...