ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-503X
    Keywords: yeast ; chromosome XIV ; genome sequencing ; OMP1 ; PSU1 ; MLS1 ; RPC19 ; DBP2 ; CYB5 ; ESBP6 ; H8263 ; AF-9 ; ENL ; TFIIF ; TBF1 ; YHR117w ; YKL221w ; YHR115c ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: This work is part of the effort for sequencing chromosome XIV of Saccharomyces cerevisiae. Cosmid 14-13b contains a 37·8 kb insert derived from a partial Sau3A digestion of the genome, cloned into the BamHI site of the vector Pou6. The strategy used for sequencing is based on the fragmentation of the whole cosmid by sonication, followed by shotgun sequencing on an Applied Biosystem DNA sequencer. The clones with inserts corresponding to the vector were identified by dot-blot hybridization, without the need of sequencing. The analysis of the DNA sequence reveals 29 open reading frames (ORFs) longer than 300 bases. Nine ORFs are internal to some other ORFs. Similarity searches against DNA and protein data banks show that six ORFs correspond to already known yeast genes (OMP1, PSU1, MLS1, RPC19, DBP2, CYB5) and one ORF matches the sequence of a putative yeast gene (ESBP6). The cosmid sequence has been submitted to the EMBL data bank under Accession Number Z69382.©1997 John Wiley & Sons, Ltd.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-07
    Description: Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture speciesMytilus galloprovincialisandCrassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-14
    Description: Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...