ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 10 (1997), S. 254-272 
    ISSN: 0894-3230
    Keywords: π-π interactions ; self-assembly ; catenanes ; cyclophanes ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The recent surge of interest in the control of molecular organization in both the solution state (i.e. self-assembly) and the solid state (i.e. crystal engineering) has led researchers to recognize increasingly the importance of weak non-covalent interactions. The design and synthesis of an efficient molecular construction set are dependent upon a very close interplay between x-ray crystallography and synthetic chemistry. π-π Stacking interactions between π-donors, such as hydroquinone, resorcinol or dioxynaphthalene residues, and π-accepting ring systems, such as bipyridinium or π-extended viologen units, can govern the self-assembly of a variety of complexes and interlocked molecular compounds in both the solid and solution states. Non-covalent bonding interactions (i.e. π-π interactions) can be considered as information vectors: they define and rule the self-assembly processes that lead to the formation of the desired molecular and supramolecular architectures, and thereafter they still govern the dynamic processes occurring within the self-assembled structures and superstructures. The manner in which such molecules and supermolecules can contribute to an understanding of non-covalent interactions at both structural and superstructural levels is described, with reference to numerous examples of self-assembly processes in synthesis, of dynamic processes in the solution state, and of the packing of molecules and molecular complexes in the solid state. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 31 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0947-6539
    Keywords: catenanes ; molecular recognition ; pseudorotaxanes ; supramolecular chemistry ; translational isomerism ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: As a result of cooperative noncovalent bonding interactions (namely, π-π stacking, [CH…O] hydrogen bonding, and [CH…π] interactions) supramolecular complexes and mechanically interlocked molecular compounds - in particular pseudorotaxanes (precatenanes) and catenanes - self-assemble spontaneously from appropriate complementary components under thermodynamic and kinetic control, respectively. The stereoelectronic information imprinted in the components is crucial in controlling the extent of the formation of the complexes and compounds in the first place; moreover, it has a very significant influence on the relative orientations and motions of the components. In other words, the noncovalent bonding interactions - that is, the driving forces responsible for the self-assembly processes - live on inside the final superstructures and structures, governing both their thermodynamic and kinetic behavior in solution. In an unsymmetrical [2]catenane, for example, changing the constitutions of the aromatic rings or altering the nature of substituents attached to them can drive an equilibrium associated with translational isomerism in the direction of one of two or more possible isomers both in solution and in the solid state. Generally speaking, the slower the components in mechanically interlocked compounds like catenanes and rotaxanes move with respect to each other, the easier it is for them to self-assemble.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0947-6539
    Keywords: cyclic voltammetry ; logic gates ; molecular devices ; pseudorotaxanes ; spectroelectrochemistry ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electrochemical and spectroscopic properties of a pseudorotaxane formed in acetonitrile solution by self-assembly of a wire-type electron donor based on the tetrathiafulvalene unit and the cyclobis(paraquat-p-phenylene) tetracationic electron acceptor have been investigated. We show that a) reversible dethreading/rethreading cycles of the pseudorotaxane can be performed by either oxidation and successive reduction of the electron-donor wire or reduction and successive oxidation of the electron-accepting tetracationic cyclophane, and b) because of this special behavior, the input (electrochemical)/output (absorption spectrum) characteristics of this molecular-level system correspond to those of an XNOR logic gate.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0947-6539
    Keywords: interlocking moleucles ; molecular recognition ; pseudorotaxanes ; rotaxanes ; template syntheses ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The self-assembly of three new rotaxanes - two [2]rotaxanes and a [3]rotaxane - formed by a “threading followed by stoppering” approach is described. These template-directed syntheses rely on the formation of pseudorotaxane intermediates, which self-assemble in solution from functionalized secondary dialkylammonium hexafluorophosphate threads and macrocyclic polyether rings (either dibenzo-[24]crown-8 or its asymmetric constitutional isomer). The stoppers - substituted 1,2,3-triazoles-were created by thermally allowed 1,3-dipolar cycloadditions between azido groups, which terminate the threads, and di-tert-butyl acetylenedicarboxylate.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0947-6539
    Keywords: catenanes ; molecular devices ; pseudorotaxanes ; self-assembly ; translational isomerism ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of π electron rich macrocyclic polythioethers and their acyclic analogues have been synthesized in good yields. The association constants for the complexation of the π electron deficient bis(hexafluorophosphate) bipyridinium-based salt, paraquat, by these macrocycles, as well as those for the complexation of corresponding acyclic compounds by the bipyridinium-based tetracationic cyclophane, cyclobis(paraquat-p-phenylene), are significantly lower than those observed in the case of the “all-oxygen” analogues. Nonetheless, yields as high as 86% were recorded in the template-directed syntheses of [2]catenanes composed of cyclobis(paraquat-p-phenylene) and the macrocyclic polythioethers. Single-crystal X-ray crystallographic analyses of the [2]catenanes incorporating constitutionally unsymmetrical π electron rich macrocyclic polythioethers revealed that, in all cases, the dioxyaromatic units are located inside the cavity of the tetracationic cyclophane component in preference to the dithiaaromatic units. A similar selectivity was observed in solution by variable-temperature 1H NMR spectroscopy. However, inversion of the ratio between the two translational isomers of the two [2]catenanes bearing 1,5-dithi-anaphthalene, as one of their π electron rich ring systems, and either 1,4-dioxy-benzene or 1,5-dioxynaphthalene, as the other, occurs upon increasing the temperature from -30 to +30 πC. These [2]catenanes can be viewed as temperature-responsive molecular switches.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0947-6539
    Keywords: crystal engineering ; dibenzofuran ; molecular quadrilaterals ; supra-molecular chemistry ; template synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The template-directed syntheses of two new tetracationic cyclophanes, cyclobis(paraquat-2,8-dibenzofuran) and cyclobis(paraquat-3,7-dibenzofuran), incorporating dibenzofuran subunits has been accomplished. Initially, the cyclophanes were self-assembled around a macrocyclic polyether template, bis-p-phenylene[34]crown-10 (BPP34C10), to form catenanes: the mechanical bond order of the catenane formed determined the requisite “amacrocyclic” templates for synthesis of the free cyclophane. X-ray crystallography shows that both of the cyclophanes possess rectangular covalent frameworks. Furthermore, these cyclophanes form self-assembled tapes in the solid state, since the dibenzofuran moieties have a tendency to associate with each other through crossed ∞-∞ stacks. The dibenzofuran-containing catenanes also form two-dimensional supramolecular arrays in the solid state on account of extended ∞-∞ stacking interactions. In addition, the serendipitous discovery of a plerotopic tecton (consisting of a dibenzofuran nucleus covalently linked from the 2- and 8-positions by methylene groups to 4,4′-pyridylpyridinium (hydrogen bond acceptor) and protonated bipyridinium (hydrogen bond donor) units) has been made. The tecton dimerizes in the solid state to form a supramolecular macrocycle, since its complementary hydrogen bonding sites are oriented in a horseshoelike fashion by the 2,8-disubstituted dibenzofuran unit. However, this superstructure is not retained in the 1:1 complex of the tecton with BPP34C10: cocrystallization of the tecton with this crown ether opens the macrocyclic two-component supermolecule to afford a hydrogen-bonded pseudopolyrotaxane.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0947-6539
    Keywords: molecular devices ; nanostructures ; rotaxanes ; self-assembly ; translational isomerism ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A number of nanometer-scale molecular assemblies, based on rotaxane-type structures, have been synthesized by means of a template-directed strategy from simple building blocks that, on account of the molecular recognition arising from the noncovalent interactions between them, are able to self-assemble into potential molecular abacuses. In all the cases investigated, the π-electron-deficient tetracationic cyclophane cyclobis(paraquat-p-phenylene) is constrained mechanically around a dumbbell-shaped component consisting of a linear polyether chain intercepted by at least two, if not three, π-electron-rich units and terminated at each end by blocking groups or stoppers. The development of an approach toward constructing these molecular abacuses, in which the tetracationic cyclophane is able to shuttle back and forth with respect to the dumbbell-shaped component, begins with the self-assembly of a [2]rotaxane consisting of two hydroquinone rings symmetrically positioned within a polyether chain terminated by triisopropylsilyl ether blocking groups. In this first so-called molecular shuttle, the tetracationic cyclophane oscillates in a degenerate fashion between the two π-electron-rich hydroquinone rings. Replacement of one of the hydroquinone rings - or the insertion of another π-electron-rich ring system between the two hydroquinine rings - introduces the possibility of translational isomerism, a phenomenon that arises because of the different relative positions and populations of the tetracationic cyclophane with respect to the π-donor sites on the dumbbell-shaped component. In two subsequent [2]rotaxanes, one of the hydroquinone rings in the dumbbell-shaped component is replaced, first by a p-xylyl and then by an indole unit. Finally, a tetrathiafulvalene (TTF) unit is positioned between two hydroquinone rings in the dumbbell-shaped component. Spectroscopic and electrochemical investigations carried out on these first-generation molecular shuttles show that they could be developed as molecular switches.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0947-6539
    Keywords: carbohydrates ; cluster glycosides ; convergent synthesis ; dendrimers ; divergent synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dendrimers coated with carbohydrates on their exterior surfaces have been constructed by using both convergent and divergent synthetic routes. Alternatively, cluster glycosides in the form of highly branched oligosaccharides can serve as dendritic wedges in the subsequent elaboration of fully carbohydrate dendrimers. It is anticipated that these novel saccharide-containing polymers, which are highly branched and water-soluble, will find applications of a biological nature as well as in the context of new materials.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Liebigs Annalen 1998 (1998), S. 2565-2571 
    ISSN: 1434-193X
    Keywords: Molecular recognition ; Rotaxanes ; Self-assembly ; Template-directed synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Three dumbbell-shaped compounds incorporating terminal triisopropylsilyl stoppers, connected to a central 1,5-dioxynaphthalene recognition site by [-CH2CH2O-]n spacers (n = 1-3), have been synthesized. These compounds have been employed as templates for the synthesis of [2]rotaxanes incorporating cyclobis(paraquat-p-phenylene) as the ring component. It was found that the length of the polyether chains of the templates influences the efficiencies of the template-directed syntheses. Rotaxane formation occurs only if n 〉 1 and, when n = 3 the corresponding [2]rotaxane can be isolated in a yield as high as 72 %. This remarkable yield is the highest ever obtained for the template-directed syntheses of [2]rotaxanes incorporating donor/acceptor interactions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1434-193X
    Keywords: Amphiphiles ; Carbohydrates ; Dendrimers ; Cluster glucosides ; Neoglycoconjugates ; Polymers ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The use of preformed poly(propylene imine) dendrimers [DAB(Pa)x] with reactive primary amine end groups proved to be very useful for the construction of saccharide surface-coated dendrimers. For this purpose, amide bonds were introduced by a reaction between the primary amine end groups of the dendrimers with N-succinimidyl-activated esters of spacer-armed acetyl-protected thioglucopyranoside units. The linear alkyl chain spacers between the dendrimer surface and the saccharide units was increased in length with 1, 5 and 10 carbon atoms. These spacer arms were introduced to determine the influence of local saccharide surface concentration variations on the dendrimer properties. After modification of the dendrimers with these saccharide units, the acetyl protecting groups were removed. Purification of these derivatives was accomplished by using dialysis either in water or in aqueous methanol. The solubility behavior of the resulting glucodendrimers proved to be strongly dependent on the hydrophobic part, i.e. the alkyl chain spacers in the molecule. Therefore, these nanosized multivalent structures, appropriate for studying carbohydrate-protein interactions, are also proposed useful for investigating amphiphilic properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...