ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (1)
  • Wiley Open Access  (1)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2014
    Description: At the land-ocean interface, terrestrial groundwater interacts with seawater to form a subterranean estuary, which can play host to dynamic biogeochemical cycling of nutrients, trace metals and radionuclides. This chemically altered groundwater enters the ocean through submarine groundwater discharge (SGD), a process that is driven by a number of physical processes acting on aquifers and the coastal ocean. In this thesis, seasonal variability in chemical cycling and associated loading to the coastal ocean was observed in a monthly time series within the Waquoit Bay (MA, USA) subterranean estuary. The position of the aquifer mixing zone moved seaward with an increase in hydraulic gradient, resulting in low salinity conditions and reduced mixing, while a decrease in gradient led to landward movement, high salinity groundwater and enhanced mixing. At this location, seasonal variability in sea level, not groundwater level, was the dominant variable driving the hydraulic gradient and therefore SGD. Fluxes of sediment bound cations to the ocean increased coincidently with sea level rise due to desorption. There was enhanced nitrogen attenuation during winter, potentially due to longer groundwater residence times, with greater nutrient delivery to coastal waters during the spring and summer bloom. Interannual climate fluctuations that control sea level and precipitation may ultimately control the timing and magnitude of chemical and water flux via SGD. In addition to temporal variability, aquifer lithology influences chemical export. This thesis also demonstrates that SGD from karst subterranean estuaries may play a role in local and global element budgets. The potential for the chemical signature of SGD to be recorded in the coral record was tested through a combination of coral culture experiments and field and modeling studies in the Yucatan Peninsula. Coral barium was well correlated with precipitation for a twelve-year record, with coral geochemistry reflecting the passage of a hurricane in 2002. While additional complexities in deciphering coral records remain, this proxy offers the potential to extend SGD records into the past.
    Description: This research was supported by a National Defense Science and Engineering Graduate Fellowship, a National Estuarine Research Reserve Graduate Fellowship from the National Oceanic and Atmospheric Administration, and grants from the U.S. Geological Survey (G10AC00210) and the U.S. National Science Foundation (OCE-0425061, OCE-0751525 and OCE-0524994). Additional funds were provided by the WHOI Academic Programs Office, WHOI Ocean and Climate Change Institute, and MIT endowed funds.
    Keywords: Biogeochemical cycles ; Chemical oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, F., Kroeger, K. D., Gonneea, M. E., Pohlman, J. W., & Tang, J. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment. Ecology and Evolution, 9(4), (2019):1911-1921, doi:10.1002/ece3.4884.
    Description: Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%−80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.
    Description: We acknowledge collaboration and support from Tim Smith of the Cape Cod National Seashore, James Rassman and Tonna‐Marie Surgeon‐Rogers of the Waquoit Bay National Estuarine Research Reserve, Margot McKlveen of the Marine Biological Laboratory, Jennifer O'keefe Suttles, Wally Brooks and Michael Casso of the USGS, and Amanda Spivak of the Woods Hole Oceanographic Institution. This study was funded by the NOAA National Estuarine Research Reserve Science Collaborative (NA09NOS4190153 and NA14NOS4190145) awarded to JT and KK, MIT Sea Grant (2015‐R/RC‐141), and USGS‐Land Carbon and Coastal & Marine Geology projects. F.W. was also supported by funding from Natural Science Foundation of China (31300419, 31670621, 31870463). Any use of trade names is for descriptive purposes and does not imply endorsement by the U.S. government.
    Keywords: carbon dioxide ; greenhouse gas ; methane ; restoration ; salt marsh
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...