ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-01
    Description: Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g. phosphatase activity increased 〉 28 fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g. plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3 – 1.6 times higher in waters containing ancient carbon, suggesting that permafrost derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulates DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: 1) the role of phenol oxidase activity in reducing inhibitory phenolic compounds; and 2) the role of phosphatase in mobilizing organic P. Permafrost derived DOM degradation was less constrained by this initial “phenolic-OM” inhibition; thus, informing reports of high biological availability of ancient, permafrost derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-30
    Description: Distinguishing the sources, ages and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14 C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin and hydroxy phenols) in the sedimentary particles from nine major arctic and sub-arctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C 24,26,28 ), plant wax FAs (C 24,26,28 ) and n -alkanes (C 27,29,31 ), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these “old” terrestrial carbon components was dependent on non-linear processes associated with permafrost distributions. By contrast, shorter-chain (C 16,18 ) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14 C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multi-tracer molecular 14 C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-23
    Description: The rapidly changing East Siberian Arctic Shelf (ESAS) receives large amounts of terrestrial organic carbon (OC) from coastal erosion and Russian-Arctic rivers. Climate warming increases thawing of coastal Ice Complex Deposits (ICD) and can change both the amount of released OC, as well as its propensity to be converted to greenhouse gases (fueling further global warming) or to be buried in coastal sediments. This study aimed to unravel the susceptibility to degradation, and transport and dispersal patterns of OC delivered to the ESAS. Bulk and molecular radiocarbon analyses on surface particulate matter (PM), sinking PM and underlying surface sediments illustrate the active release of old OC from coastal permafrost. Molecular tracers for recalcitrant soil OC showed ages of 3.4-13 14 C-ky in surface PM and 5.5-18 14 C-ky in surface sediments. The age difference of these markers between surface PM and surface sediments is larger (i) in regions with low OC accumulation rates, suggesting a weaker exchange between water column and sediments, and (ii) with increasing distance from the Lena River, suggesting preferential settling of fluvially-derived old OC nearshore. A dual-carbon end-member mixing model showed that (i) contemporary terrestrial OC is dispersed mainly by horizontal transport while being subject to active degradation, (ii) marine OC is most affected by vertical transport and also actively degraded in the water column, and (iii) OC from ICD settles rapidly and dominates surface sediments. Preferential burial of ICD-OC released into ESAS coastal waters might therefore lower the suggested carbon cycle climate feedback from thawing ICD permafrost. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-03
    Description: [1]  High-latitude regions are underlain by the most organic carbon (OC)-rich soils on earth and currently subject to intense climate warming, potentially increasing remobilization and mineralization of soil OC. Sub-Arctic Scandinavia is located on the 0°C mean annual isotherm and is therefore particularly vulnerable to climate change. This study aimed to establish a baseline for soil OC release over the past century into Lake Torneträsk, the largest lake in sub-Arctic Scandinavia, through bulk geochemical and molecular radiocarbon analyses in chronologically constrained sediment cores. Our results suggest a dominance of peat-derived terrestrial OC inflow. We show that the annual terrestrial OC inflow to the lake is ∼12 times higher than the in-lake produced particulate OC, and consists for a large part (ca. 60%) of old OC from deep reservoirs in the catchment. The sedimentary record shows signs of increasing inflow of more degraded terrestrial matter since ∼1975, as indicated by increasing %TOC concentrations, a lower δ 13 C value and lower TOC:TN ratios. Based on simultaneous changes in local climate and reported signs of permafrost degradation (e.g., active layer deepening, mire/peat erosion), the observed changes in the sedimentary record of Scandinavia's largest mountain lake likely reflect a climate warming-induced change in terrestrial OC inflow.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-21
    Description: Fluvial and erosional release processes in permafrost-dominated Eurasian Arctic cause transport of large amounts of particulate organic carbon (POC) to coastal waters. The marine fate of this terrestrial POC (terr-POC), water column degradation, burial in shelf sediments, or export to depth, impacts the potential for climate-carbon feedback. As part of the International Siberian Shelf Study (ISSS-08; August–September 2008), the POC distribution, inventory, and fate in the water column of the extensive yet poorly studied Eurasian Arctic Shelf seas were investigated. The POC concentration spanned 1–152 μM, with highest values in the SE Laptev Sea. The POC inventory was constrained for the Laptev (1.32 ± 0.09 Tg) and East Siberian seas (2.85 ± 0.20 Tg). A hydraulic residence time of 3.5 ± 2 years for these Siberian shelf seas yielded a combined annual terr-POC removal flux of 3.9 ± 1.4 Tg yr−1. Accounting for sediment burial and shelf-break exchange, the terr-POC water column degradation was ∼2.5 ± 1.6 Tg yr−1, corresponding to a first-order terr-POC degradation rate constant of 1.4 ± 0.9 yr−1, which is 5–10 times faster than reported for terr-DOC degradation in the Arctic Ocean. This terr-POC degradation flux thus contributes substantially to the dissolved inorganic carbon excess of 10 Tg C observed during ISSS-08 for these waters. This evaluation suggests that extensive decay of terr-POC occurs already in the water column and contributes to outgassing of CO2. This process should be considered as a geographically dislocated carbon-climate coupling where thawing of vulnerable permafrost carbon on land is eventually adding CO2 above the ocean.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-17
    Description: ABSTRACT Arctic amplification of climate warming is intensifying the thaw and coastal erosion of the widespread and carbon-rich Siberian Ice Complex Deposits (ICD). Despite the potential for altering long-term carbon dynamics in the Arctic, the susceptibility of organic carbon (OC) to degradation as the ICD thaw is poorly characterised. This study identifies signs of OC degradation in three Siberian ICD regimes of coastal erosion through elemental, isotopic and molecular analyses. The degree of erosion appears to determine the extent of degradation. The moisture-limited and beach-protected ICD bluff near Buor-Khaya Cape, characterised by thermokarst mounds ( baydzherakhs ), represents a dormant regime with limited ongoing degradation. Conversely, the more exposed ICD scarps on eroding riverbanks (Olenek Channel, Lena Delta) and coastal slopes (Muostakh Island) showed more pronounced signs of ongoing OC decay. Different parameters suggest that degradation can partially explain the shift of the OC signature with 14 C age in the thawing ICD. Exposure time, degree of erosion, slope gradient and moisture conditions appear to be key factors determining the degradation propensity of OC in exposed ICD. These field results document the lability of OC in ICD upon thaw and illustrate the potential for transferring old OC into the rapidly cycling atmosphere-biosphere carbon pools. Copyright © 2014 John Wiley & Sons, Ltd.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-28
    Description: To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this new measurement strategy by developing and deploying iSPEX, a low-cost, mass-producible optical add-on for smartphones with a corresponding app. The aerosol optical thickness (AOT) maps derived from iSPEX spectropolarimetric measurements of the daytime cloud-free sky by thousands of citizen scientists throughout the Netherlands are in good agreement with the spatial AOT structure derived from satellite imagery and temporal AOT variations derived from ground-based precision photometry. These maps show structures at scales of kilometers that are typical for urban air pollution, indicating the potential of iSPEX to provide information about aerosol properties at locations and at times that are not covered by current monitoring efforts.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-12
    Description: Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high latitude lakes. Comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter (SPM), riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil and lake calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers - cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. Application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake-calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-16
    Description: [1]  Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial OC pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of this ancient OC in coastal and fluvial environments still remains rudimentary. Here, we show that ancient dissolved OC (DOC, 〉21,000 14 C yrs), the oldest DOC ever reported, is mobilized in stream waters draining Yedoma outcrops. Furthermore, this DOC is highly biolabile: 34 ± 0.8% was lost during a 14-day incubation under dark, oxygenated conditions at ambient river temperatures. Mixtures of Yedoma stream DOC with main stem river and ocean waters, mimicking in situ mixing processes, also showed high DOC losses (14-day; 17 ± 0.8% to 33 ± 1.0%). This suggests that this exceptionally old DOC is among the most biolabile DOC in any previously reported contemporary river or stream in the Arctic.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-09
    Description: High-latitude regions are underlain by the most organic carbon (OC)-rich soils on earth and currently subject to intense climate warming, potentially increasing remobilization and mineralization of soil OC. Sub-Arctic Scandinavia is located on the 0°C mean annual isotherm and is therefore particularly vulnerable to climate change. This study aimed to establish a baseline for soil OC release over the past century into Lake Torneträsk, the largest lake in sub-Arctic Scandinavia, through bulk geochemical and molecular radiocarbon analyses in chronologically constrained sediment cores. Our results suggest a dominance of peat-derived terrestrial OC inflow. We show that the annual terrestrial OC inflow to the lake is ∼12 times higher than the in-lake produced particulate OC, and consists for a large part (ca. 60%) of old OC from deep reservoirs in the catchment. The sedimentary record shows signs of increasing inflow of more degraded terrestrial matter since ∼1975, as indicated by increasing %TOC concentrations, a lower δ13C value and lower TOC:TN ratios. Based on simultaneous changes in local climate and reported signs of permafrost degradation (e.g., active layer deepening, mire/peat erosion), the observed changes in the sedimentary record of Scandinavia's largest mountain lake likely reflect a climate warming-induced change in terrestrial OC inflow.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...