ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: Traditional medicinal literature and previous studies have reported the possible role of Cissus quadrangularis (CQ) as an anti-osteoporotic agent. This study examines the effectiveness of CQ in promoting osteoblast differentiation of the murine pre-osteoblast cell line, MC3T3-E1. Ethanolic extract of CQ (CQ-E) was found to affect growth kinetics of MC3T3-E1 cells in a dosage dependent manner. High concentrations of CQ-E (more than 10 µg/ml) have particularly adverse effects, while lower concentrations of 0.1 and 1 µg/ml were non-toxic and did not affect cell viability. Notably, cell proliferation was significantly increased at the lower concentrations of CQ-E. CQ-E treatment also augmented osteoblast differentiation, as reflected by a substantial increase in expression of the early osteoblast marker ALP activity, and at later stage, by mineralization of extracellular matrix compared to the control group. These findings suggest dose-dependent effect of CQ-E with lower concentrations exhibiting anabolic and osteogenic properties. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-07
    Description: The serine/threonine kinase Akt/PKB promotes cancer cell growth and invasion through several downstream targets. Identification of novel substrates may provide new avenues for therapeutic intervention. Our study shows that Akt phosphorylates the cancer related transcription factor Runx2 resulting in stimulated DNA binding of the purified recombinant protein in vitro . Pharmacological inhibition of the PI3K/Akt pathway in breast cancer cells reduces DNA binding activity of Runx2 with concomitant reduction in the expression of metastasis related Runx2 target genes. Akt phosphorylates Runx2 at three critical residues within the runt DNA binding domain to enhance its in vivo genomic interactions with a target gene promoter, MMP13. Mutation of these three phosphorylation sites reduces Runx2 DNA binding activity, but does not interefere with CBFβ-Runx2 interactions. Consequently, expression of multiple metastasis-related genes is decreased and Runx2 mediated cell invasion is supressed. Thus, our work identifies Runx2 as a novel and important downstream mediator of the PI3K/Akt pathway that is linked to metastatic properties of breast cancer cells. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-22
    Description: Core Binding Factor β (CBFβ) is complexed with the RUNX family of transcription factors in the nucleus to support activation or repression of genes related to bone (RUNX2), hematopoiesis (RUNX1) and gastrointestinal (RUNX3) development. Furthermore, RUNX proteins contribute to the onset and progression of different types of cancer. Although CBFβ localizes to cytoskeletal architecture, its biological role in the cytoplasmic compartment remains to be established. Additionally, the function and localization of CBFβ during the cell cycle are important questions relevant to its biological role. Here we show that CBFβ dynamically distributes in different stages of cell division and importantly is present during telophase at the midbody, a temporal structure important for successful cytokinesis. A functional role for CBFβ localization at the midbody is supported by striking defects in cytokinesis that include polyploidy and abscission failure following siRNA-mediated downregulation of endogenous CBFβ or overexpression of the inv(16) fusion protein CBFβ-SMMHC. Our results suggest that CBFβ retention in the midbody during cytokinesis reflects a novel function that contributes to epigenetic control. J. Cell. Physiol. 9999: XX–XX, 2014. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-24
    Description: ABSTRACT In tumor cells, two factors are abnormally increased that contribute to metastatic bone disease: Runx2, a transcription factor that promotes expression of metastasis related and osteolytic genes; and IL-11, a secreted osteolytic cytokine. Here, we addressed a compelling question: Does Runx2 regulate IL-11 gene expression? We find a positive correlation between Runx2, IL-11 and TGFβ1, a driver of the vicious cycle of metastatic bone disease, in prostate cancer (PC) cell lines representing early (LNCaP) and late (PC3) stage disease. Further, like Runx2 knockdown, IL-11 knockdown significantly reduced expression of several osteolytic factors. Modulation of Runx2 expression results in corresponding changes in IL-11 expression. The IL-11 gene has Runx2, AP-1 sites and Smad binding elements located on the IL-11 promoter. Here, we demonstrated that Runx2-c-Jun as well as Runx2-Smad complexes upregulate IL-11 expression. Functional studies identified a significant loss of IL-11 expression in PC3 cells in the presence of the Runx2-HTY mutant protein, a mutation that disrupts Runx2-Smad signaling. In response to TGFβ1 and in the presence of Runx2, we observed a 30-fold induction of IL-11 expression, accompanied by increased c-Jun binding to the IL-11 promoter. Immunoprecipitation and in situ co-localization studies demonstrated that Runx2 and c-Jun form nuclear complexes in PC3 cells. Thus, TGFβ1 signaling induces two independent transcriptional pathways - AP-1 and Runx2. These transcriptional activators converge on IL-11 as a result of Runx2-Smad and Runx2-c-Jun interactions to amplify IL-11 gene expression that, together with Runx2, supports the osteolytic pathology of cancer induced bone disease. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-22
    Description: The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologues that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in man cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-22
    Description: Runx1 is a transcription factor essential for definitive hematopoiesis, and genetic abnormalities in Runx1 cause leukemia. Runx1 is functionally promiscuous and acts as either an oncogene or tumor suppressor gene in certain epithelial cancers. Recent evidence suggests that Runx1 is an important factor in breast cancer, however its role remains ambiguous. Here, we addressed whether Runx1 has a specific pathological role during breast cancer progression and show that Runx1 has an oncogenic function. We observed elevated Runx1 expression in a subset of human breast cancers. Furthermore, throughout the course of disease progression in a classical mouse model of breast cancer (i.e., the MMTV-PyMT transgenic model), Runx1 expression increases in the primary site (mammary gland) and is further upregulated in tumors and distal lung metastatic lesions. Ex vivo studies using tumor epithelial cells derived from these mice express significantly higher levels of Runx1 than normal mammary epithelial cells. The tumor cells exhibit increased rates of migration and invasion, indicative of an aggressive cancer phenotype. Inhibition of Runx1 expression using RNA interference significantly abrogates these cancer-relevant phenotypic characteristics. Importantly, our data establish that Runx1 contributes to murine mammary tumor development and malignancy and potentially represents a key disease-promoting and prognostic factor in human breast cancer progression and metastasis. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-07
    Description: Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (〉10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-16
    Description: Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-31
    Description: Mitotic bookmarking is an epigenetic control mechanism that sustains gene expression in progeny cells; it is often found in genes related to the maintenance of cellular phenotype and growth control. RUNX transcription factors regulate a broad spectrum of RNA Polymerase (Pol II) transcribed genes important for lineage commitment but also regulate RNA Polymerase I (Pol I) driven ribosomal gene expression, thus coordinating control of cellular identity and proliferation. In this study, using fluorescence microscopy and biochemical approaches we show that the principal RUNX co-factor, CBFβ, associates with nucleolar organizing regions (NORs) during mitosis to negatively regulate RUNX-dependent ribosomal gene expression. Of clinical relevance, we establish for the first time that the leukemogenic fusion protein CBFβ-SMMHC (smooth muscle myosin heavy chain) also associates with ribosomal genes in interphase chromatin and mitotic chromosomes to promote and epigenetically sustain regulation of ribosomal genes through RUNX factor interactions. Our results demonstrate that CBFβ contributes to the transcriptional regulation of ribosomal gene expression and provide further understanding of the epigenetic role of CBFβ-SMMHC in proliferation and maintenance of the leukemic phenotype. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-01
    Description: Objective Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Methods Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Results Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte 'clones' where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. Conclusion The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human 'clones' of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...