ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Estuarine CO2 emissions are important components of regional and global carbon budgets, but assessments of this flux are plagued by uncertainties associated with gas transfer velocity (k) parameterization. We combined direct eddy covariance measurements of CO2 flux with waterside pCO2 determinations to generate more reliable k parameterizations for use in small estuaries. When all data were aggregated, k was described well by a linear relationship with wind speed (U10), in a manner consistent with prior open ocean and estuarine k parameterizations. However, k was significantly greater at night and under low wind speed, and nighttime k was best predicted by a parabolic, rather than linear, relationship with U10. We explored the effect of waterside thermal convection but found only a weak correlation between convective scale and k. Hence, while convective forcing may be important at times, it appears that factors besides waterside thermal convection were likely responsible for the bulk of the observed nighttime enhancement in k. Regardless of source, we show that these day‐night differences in k should be accounted for when CO2 emissions are assessed over short time scales or when pCO2 is constant and U10 varies. On the other hand, when temporal variability in pCO2 is large, it exerts greater control over CO2 fluxes than does k parameterization. In these cases, the use of a single k value or a simple linear relationship with U10 is often sufficient. This study provides important guidance for k parameterization in shallow or microtidal estuaries, especially when diel processes are considered.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Fresh volcanic eruption deposits tend to be loose, bare, and readily resuspended by wind. Major resuspension events in Patagonia, Iceland, and Alaska have lofted ash clouds with potential to impact aircraft, infrastructure, and downwind communities. However, poor constraints on this resuspension process limit our ability to model this phenomenon. Here, we present laboratory experiments measuring threshold shear velocities and emission rates of resuspended ash under different environmental conditions, including relative humidity of 25–75% and simulated rainfall with subsequent drying. Eruption deposits were replicated using ash collected from two major eruptions: the 18 May 1980 eruption of Mount St. Helens and the 1912 eruption of Novarupta, in Alaska's Valley of Ten Thousand Smokes. Samples were conditioned in a laboratory chamber and prepared with bulk deposit densities of 1,300–1,500 kg/m3. A control sample of dune sand was included for comparison. The deposits were subjected to different wind speeds using a modified PI‐SWERL® instrument. Under a constant relative humidity of 50% and shear velocities 0.4–0.8 m/s, PM10 emission by resuspension ranged from 10 to 〉100 mg·m−2·s−1. Addition of liquid water equivalent to 5 mm of rainfall had little lasting effect on Mount St. Helens wind erosion potential, while the Valley of Ten Thousand Smokes deposits exhibited lower emissions for at least 12 days. The results indicate that particle resuspension due to wind erosion from ash deposits potentially exceeds that of most desert surfaces and approaches some of the highest emissions ever measured.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: Abstract Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.
    Print ISSN: 0954-4879
    Electronic ISSN: 1365-3121
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge ( Carex sp.) , which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production (“productivity shift”), (2) litter stoichiometry within the same species (“intraspecific shift”), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors (“interspecific shift”), and (4) litter decomposition rates due to an altered external environment (e.g. shifts in microbial activity) (“exogenous shift”). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. Conclusively, our results show that eutrophication affects litter accumulation and -decomposition at multiple levels, in which stimulatory and inhibitory effects interact. The cumulative effect of these interactions ultimately determine whether peatlands remain sinks or become sources of carbon under eutrophic conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-19
    Description: Acceleration of Greenland's three largest outlet glaciers, Helheim, Kangerdlugssuaq and Jakobshavn Isbræ, accounted for a substantial portion of the ice sheet's mass loss over the past decade. Rapid changes in their discharge, however, make their cumulative mass-change uncertain. We derive monthly mass balance rates and cumulative balance from discharge and surface mass balance (SMB) rates for these glaciers from 2000 through 2010. Despite the dramatic changes observed at Helheim, the glacier gained mass over the period, due primarily to the short-duration of acceleration and a likely longer-term positive balance. In contrast, Jakobshavn Isbræ lost an equivalent of over 11 times the average annual SMB and loss continues to accelerate. Kangerdlugssuaq lost over 7 times its annual average SMB, but loss has returned to the 2000 rate. These differences point to contrasts in the long-term evolution of these glaciers and the danger in basing predictions on extrapolations of recent changes.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-06-28
    Description: We present a mechanism for wind-driven sea ice export from the Arctic Ocean through Fram Strait for the period 1979–2007, using the output of a high-resolution regional atmospheric climate model. By explicitly calculating the components of the atmospheric momentum budget, we show that not large scale synoptic forcing (LSC), but mainly thermal wind forcing (THW) causes the persistent northerly jet (the Greenland Sea Jet) over Fram Strait. The jet results from horizontal temperature gradients in the atmospheric boundary layer (ABL), set up between cold ABL-air over the sea ice covered western Greenland Sea and the relatively warmer ABL over the ice-free eastern Greenland Sea. From 1993 onwards we find a negative trend in THW, due to a stronger response to climate warming of the ABL over the sea ice covered ocean, compared to that over the ice free ocean. Although on average LSC is smaller than THW, year to year variations in LSC explain most of the interannual variability in the sea ice area flux through Fram Strait (R = 0.81). A small positive trend is found for LSC, partly compensating the decrease in THW in recent years.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-11
    Description: In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001–2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia—regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-08-03
    Description: The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that the 2006 default SWAN model (version 40.51), the starting point of the investigation, performed reasonably well for measured storm conditions, but three aspects required further attention. First, over the near-horizontal tidal flats, the computed ratio of integral wave height over water depth showed an apparent upper limit using the default depth-limited wave breaking formulation and breaker parameter, resulting in an underprediction of wave heights. This problem has been largely solved using a new breaker formulation. The second aspect concerns wave-current interaction, specifically the wave age effect on waves generated in ambient current, and a proposed enhanced dissipation in negative current gradients. Third, the variance density of lower-frequency wind waves from the North Sea penetrating through the inlets into the Wadden Sea was underpredicted. This was improved by reducing the bottom friction dissipation relative to that of the default model. After a combined calibration, these improvements have resulted in a relative bias reduction in Hm0 from −3% to −1%, in Tm−1,0 from −7% to −3%, and in Tm01 from −6% to −2%, and consistent reductions in scatter, compared to the 2006 default model.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-05
    Description: Survival of juvenile freshwater mussels ( Echyridella menziesii (Gray, 1843) formerly known as Hyridella menziesi ) and crayfish ( Paranephrops planifrons , White, 1842) decreased after four days exposure to microcystin-containing cell-free extracts (MCFE) of Microcystis sp. at concentrations typical of severe cyanobacterial blooms. Crayfish survival was 100, 80, and 50% in microcystin concentrations of 1339, 2426, and 11146 μg L −1 respectively, and shade- and shelter-seeking behavior was negatively affected when concentrations were ≥2426 μg L −1 . Mussel survival decreased to 92% and reburial rates decreased to 16% after exposure for 96 h to MCFE containing microcystins at concentrations of 5300 μg L −1 . Crayfish survival was 100% when fed freeze-dried Microcystis sp. incorporated into an artificial diet (6–100 μg microcystin kg −1 ww) at dietary doses from 0.03 to 0.55 μg g −1 body weight d −1 for 27 days. Specific growth rate was significantly lower in crayfish fed ≥0.15 μg g −1 body weight day −1 compared with controls, but not compared with a diet incorporating nontoxic cyanobacteria. Microcystins accumulated preferentially in crayfish hepatopancreas and mussel digesta as MCFE or dietary concentrations increased. These laboratory data indicate that, assuming dissolved oxygen concentrations remain adequate, and no simultaneous exposure to live Microcystis sp. cells, cell-free microcystins will only be a significant stressor to juvenile crayfish and mussels in severe Microcystis sp. blooms. In contrast, crayfish were negatively affected by relatively low concentrations of microcystins in artificial diets compared with those measured locally in benthic cyanobacterial mats. © 2012 Wiley Periodicals, Inc. Environ Toxicol, 2012.
    Print ISSN: 1520-4081
    Electronic ISSN: 1522-7278
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-15
    Description: Survival of juvenile freshwater mussels ( Echyridella menziesii (Gray, 1843) formerly known as Hyridella menziesi ) and crayfish ( Paranephrops planifrons , White, 1842) decreased after four days exposure to microcystin-containing cell-free extracts (MCFE) of Microcystis sp. at concentrations typical of severe cyanobacterial blooms. Crayfish survival was 100, 80, and 50% in microcystin concentrations of 1339, 2426, and 11146 μg L −1 respectively, and shade- and shelter-seeking behavior was negatively affected when concentrations were ≥2426 μg L −1 . Mussel survival decreased to 92% and reburial rates decreased to 16% after exposure for 96 h to MCFE containing microcystins at concentrations of 5300 μg L −1 . Crayfish survival was 100% when fed freeze-dried Microcystis sp. incorporated into an artificial diet (6–100 μg microcystin kg −1 ww) at dietary doses from 0.03 to 0.55 μg g −1 body weight d −1 for 27 days. Specific growth rate was significantly lower in crayfish fed ≥0.15 μg g −1 body weight day −1 compared with controls, but not compared with a diet incorporating nontoxic cyanobacteria. Microcystins accumulated preferentially in crayfish hepatopancreas and mussel digesta as MCFE or dietary concentrations increased. These laboratory data indicate that, assuming dissolved oxygen concentrations remain adequate, and no simultaneous exposure to live Microcystis sp. cells, cell-free microcystins will only be a significant stressor to juvenile crayfish and mussels in severe Microcystis sp. blooms. In contrast, crayfish were negatively affected by relatively low concentrations of microcystins in artificial diets compared with those measured locally in benthic cyanobacterial mats. © 2012 Wiley Periodicals, Inc. Environ Toxicol, 2012.
    Print ISSN: 1520-4081
    Electronic ISSN: 1522-7278
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...