ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-09
    Description: Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (∼23°) and deeper slab to the north of 21°S to the flatter southern segment (∼19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ∼50 My, is estimated to be ∼50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere-asthenosphere boundary may require another mechanism such as hydration or melting.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-22
    Description: The Himalaya and the Tibetan Plateau are uplifted by the ongoing northward underthrusting of the Indian continental lithosphere below Tibet resulting in lithospheric stacking. The layered structure of the Tibetan upper mantle is imaged by seismic methods, most detailed with the receiver function method. Tibet is considered as a place where the development of a future craton is currently under way. Here we study the upper mantle from Germany to northern Sweden with seismic S receiver functions and compare the structure below Scandinavia with that below Tibet. Below Proterozoic Scandinavia, we found two low velocity zones on top of each other, separated by a high velocity zone. The top of the upper low velocity zone at about 100km depth extends from Germany to Archaean northern Sweden. It agrees with the lithosphere-asthenosphere boundary (LAB) below Germany and Denmark. Below Sweden it is known as the 8°discontinuity, or as a mid-lithospheric discontinuity (MLD), similar to observations in North America. Seismic tomography places the LAB near 200km in Scandinavia, which is close to the top of our deeper low velocity zone. We also observed the bottom of the asthenosphere (the Lehmann discontinuity) deepening from 180km in Germany to 260km below Sweden. Remnants of old subduction in the upper about 100km below Scandinavia and Finland are known from controlled source seismic experiments and local earthquake studies. Recent tomographic studies indicate delamination of the lithosphere below southern Scandinavia and northern Germany. We are suggesting that the large scale layered structure in the Scandinavian upper mantle may be caused by processes similar to the ongoing lithospheric stacking in Tibet.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...