ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2016-05-13
    Beschreibung: The recent discovery of methane seeps in the Arctic region requires a better understanding of the fate of methane in marine sediments if we are to understand the contributions of methane to Arctic ecosystems and climate change. To this goal, we analyze pore water data from five sites along eastern Vestnesa Ridge, a sediment drift off-north-west Svalbard, to quantify the consumption of dissolved methane across the sulfate-methane-transition-zone which are 3–5 m below seafloor from the investigated sites. We use transport-reaction models to quantify the hydrology as well as the carbon mass balance in the sediments. Pore water profiles and our model results demonstrate that hydrological, microbial, and geochemical processes/reactions efficiently remove methane carbon from fluid over different time scales. We interpret the nonsteady-state behavior of the first 50–70 cm of our pore water profiles from the active sites as an annual scale downward fluid flow due to a seepage-related pressure imbalance. Such downward flow supplies sulfate which enhances methane consumption through anaerobic oxidation of methane (AOM) within this depth range. Our steady-state modeling confirms the efficiency of AOM in consuming dissolved methane in the upper 0.8–1.2 m of sediments. Based on the phosphate profiles, we estimate that AOM at the active pockmarks may have been operating for the last two to four centuries. Precipitation of authigenic carbonate removes more than a quarter of the dissolved inorganic carbon produced by AOM and fixes it as authigenic carbonate in the sediments, a process that sequestrates methane carbon over geological time.
    Print ISSN: 0024-3590
    Digitale ISSN: 1939-5590
    Thema: Biologie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-06-19
    Beschreibung: Three depth-converted and geologically interpreted seismic profiles provide a clear image of the offshore outer accretionary wedge associated with oblique subduction of the Pacific Plate beneath the central Hikurangi margin. Plio-Quaternary turbidites deposited over the pelagic cover sequence of the Hikurangi Plateau have been accreted to the margin by imbrication along E-verging thrust faults that propagated up-section from the plate boundary décollement. Growth stratigraphy of piggy-back basins and thrusting of progressively younger horizons trace the eastward advance of the leading thrust front over c. 60 km in the last 2 Myr. Moderate internal shortening of fault-bounded blocks typically 4-8 km wide reflects rapid creation of thrust faults, with some early formed faults undergoing out-of-sequence reactivation to maintain critical wedge taper. Multi-stage structural restorations show that forward progression of shortening involves: (1) initial development of a c. 10-25 km wide “proto-thrust” zone, comprising conjugate sets of moderately to steeply dipping low-displacement (c. 10-100 m) reverse faults; and (2) growth of thrust faults that exploit some of the early proto-thrust faults and propagate up-section with progressive break-through of folds localized above the fault tips. The youngest, still unbreached folds deform the present-day seafloor. Progressive retro-deformations show that macroscopic thrust faults and folds account for less than 50% of the margin-perpendicular shortening imposed by plate convergence. Arguably, significant fractions of the missing components can be attributed to meso- and microscopic scale layer-parallel shortening within the wedge, in the proto-thrust zones, and in the outer décollement zone. This article is protected by copyright. All rights reserved.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-08-29
    Beschreibung: Identification of methane sources controlling hydrate distribution and concentrations in continental margins remains a major challenge in gas hydrate research. Lack of deep fluid samples and high quality regional scale seismic reflection data may lead to underestimation of the significance of fluid escape from subducting and compacting sediments in the global inventory of methane reaching the hydrate zone, the water column and the atmosphere. The distribution of concentrated hydrate zones in relation to focused fluid flow across the southern Hikurangi subduction margin was investigated using high quality, long offset (10 km streamer), pre-stack depth migrated multichannel seismic data. Analysis of low P wave velocity zones, bright-reverse polarity reflections and dim-amplitude anomalies reveals pathways for gas escape and zones of gas accumulation. The study shows the structural and stratigraphic settings of three main areas of concentrated hydrates: (1) the Opouawe Bank, dominated by focused periodic fluid input along thrust faults sustaining dynamic hydrate concentrations and gas chimneys development; (2) the frontal anticline, with a basal set of proto-thrusts controlling permeability for fluids from deeply buried and subducted sediments sustaining hydrate concentrations at the crest of the anticline; and (3) the Hikurangi Channel, with buried sand dominated channels hosting significant amounts of gas beneath the base of the hydrate zone. In sand dominated channels gas injection into the hydrate zone favors highly concentrated hydrate accumulations. The evolution of fluid expulsion controlling hydrate formation offshore southern Hikurangi is described in stages during which different methane sources (in situ, buried and thermogenic) have been dominant.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-01-14
    Beschreibung: Methane expulsion from the world ocean floor is a broadly observed phenomenon known to be episodic. Yet, the processes that modulate seepage remain elusive. In the Arctic offshore west Svalbard, for instance, seepage at 200 – 400 m water depth may be explained by ocean temperature controlled gas hydrate instabilities at the shelf break but additional processes are required to explain seepage in permanently cold waters at depths 〉 1000 m. We discuss the influence of tectonic stress on seepage evolution along the ~100 km long hydrate-bearing Vestnesa Ridge in Fram Strait. High resolution P-Cable 3D seismic data revealed fine scale (〉10 m width) near-vertical faults and fractures controlling seepage distribution. Gas chimneys record multiple seepage events coinciding with glacial intensification and active faulting. The faults document the influence of nearby tectonic stress fields in seepage evolution along this deep-water gas hydrate system for at least the last ~2.7 Ma.
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2014-10-15
    Beschreibung: ABSTRACT Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow-like deformation within gas hydrate-bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. 1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. 2) Overpressure below low-permeability gas hydrate-bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. 3) Gas hydrate-bearing sediment could exhibit time-dependent plastic deformation enabling glacial-style deformation. We favor the final hypothesis, that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time-dependent deformation behavior of gas-hydrate-bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and inter-sediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a re-evaluation of slope stability following future climate-forced variation in bottom water temperature.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-12-02
    Beschreibung: Pre-stack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure and seismic velocities resolved to ∼14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration and short-term geodetically determined slow-slip events. The subduction interface is a shallow dipping thrust at 〈 7 km depth near the trench and steps down to 14 km depth along an ∼18 km long ramp, beneath Porangahau Ridge. This apparent bend in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, up-dip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip. This article is protected by copyright. All rights reserved.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-06-02
    Beschreibung: The Vestnesa Ridge comprises a 〉 100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep-water (〉1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions, results in an unusual underestimation of the observed bottom simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with 〉 99 % methane. Models for measured gas compositions with 〉 4% higher order hydrocarbons result in a better BSR approximation. However, the BSR remains 〉 20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unexpected spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50 % in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2013-12-29
    Beschreibung: Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology and climate change. Although the relationship between hydrates, gas chimneys and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e. protothrusts, normal faults from flexural extension, and shallow (〈1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2x7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for sub-seafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-11-06
    Beschreibung: We studied discrete bivalve shell horizons in two gravity cores from seafloor pockmarks on the Vestnesa Ridge (ca. 1200 m water depth), western Svalbard (79° 00' N, 06° 55' W) to provide insight into the temporal and spatial dynamics of seabed methane seeps. The shell beds, dominated by two genera of the family Vesicomyidae: Phreagena s.l. and Isorropodon sp., were 20-30cm thick and centered at 250-400cm deep in the cores. The carbon isotope composition of inorganic (δ 13 C from -13.02‰ to +2.36‰) and organic (δ 13 C from -29.28‰ to -21.33‰) shell material and a two-end member mixing model indicate that these taxa derived between 8% and 43% of their nutrition from chemosynthetic bacteria. In addition, negative δ 13 C values for planktonic foraminifera (-6.7‰ to -3.1‰), micritic concretions identified as methane-derived authigenic carbonates, and pyrite encrusted fossil worm tubes at the shell horizons indicate a sustained paleo-methane seep environment. Combining sedimentation rates with 14 C ages for bivalve material from the shell horizons, we estimate the horizons persisted for about 1000 years between approximately 17,707 to 16,680 yrs. BP (corrected). The seepage event over a 1000-year time interval was most likely associated with regional stress-related faulting and the subsequent release of over-pressurized fluids. This article is protected by copyright. All rights reserved.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-12-08
    Beschreibung: The continental margin off Prins Karls Forland, western Svalbard, is characterized by widespread natural gas seepage into the water column at and upslope of the gas hydrate stability zone. We deployed an ocean bottom seismometer integrated into the MASOX (Monitoring Arctic Seafloor-Ocean Exchange) automated seabed observatory at the pinch-out of this zone at 389 m water depth to investigate passive seismicity over a continuous 297 day period from October 13 th 2010. An automated triggering algorithm was applied to detect over 220,000 short duration events (SDEs) defined as having a duration of less than 1 s. The analysis reveals two different types of SDEs, each with a distinctive characteristic seismic signature. We infer that the first type consists of vocal signals generated by moving mammals, likely finback whales. The second type corresponds to signals with a source within a few hundred meters of the seismometer, either due east or west, that vary on short (∼tens of days) and seasonal time-scales. Based on evidence of prevalent seafloor seepage and sub-seafloor gas accumulations, we hypothesize that the second type of SDEs is related to sub-seafloor fluid migration and gas seepage. Furthermore, we postulate that the observed temporal variations in microseismicity are driven by transient fluid release and due to the dynamics of thermally-forced, seasonal gas hydrate decomposition. Our analysis presents a novel technique for monitoring the duration, intensity and periodicity of fluid migration and seepage at the seabed and can help elucidate the environmental controls on gas hydrate decomposition and release.
    Digitale ISSN: 1525-2027
    Thema: Chemie und Pharmazie , Geologie und Paläontologie , Physik
    Publiziert von Wiley im Namen von American Geophysical Union (AGU).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...