ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-21
    Description: In this study, we examined middle- and low-latitude Pi 2 events to address the following two issues regarding the well-known substorm current wedge (SCW) model for Pi 2 pulsations: (1) the center of the SCW, which is estimated using the Pi 2 polarization pattern, is not always collocated with that determined using the magnetic bay pattern, and (2) although ideally Pi 2 hodograms would be linear, they tend to become circular. In this study, auroral breakup events were identified from Polar Ultra Violet Imager data. We assumed that the ionospheric footprint of the upward field-aligned current (FAC) in each event was located at the position of the auroral breakup and subsequently calculated the signature of the magnetic variation at the middle-latitude station Zyryanka (ZYK; GMLAT=59.6°) that was generated by the upward FAC. In order to examine the magnetic effects of the upward FAC, we selected Pi 2 events that were observed when ZYK was located on the duskward side of the auroral breakup location. A total of 112 events were selected and analyzed in this study. It was found that the location of the upward FAC of the SCW could be estimated more accurately by using an azimuth value predicted based on the initial deflection of the middle-latitude Pi 2. Our results suggest that the circular shapes of Pi 2 polarization curves are caused by the delayed driven Alfvénic waves that are superimposed on the geomagnetic northward components of SCW oscillations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-23
    Description: In this report we present a temporal relationship between ground Pi2 and auroral kilometric radiation (AKR). We analyzed six isolated substorm events, which were observed by the MAGDAS/CPMN ground magnetometer network and the plasma wave instrument onboard the Polar satellite. We found that the time derivative of the height-integrated AKR power and the ground Pi2 D component had the same periodicity and that the two were synchronized with each other. When the D component fluctuated with the same (opposite) polarity as the magnetic bay variation, the AKR power tended to increase (decrease) during the corresponding interval. An isolated substorm event (AE ∼ 40 nT), which occurred around 10:19 UT on 24 January1997, was selected for a detailed study. The behavior of the Pi2 event can be interpreted by the substorm current wedge (SCW) and Pi2 propagation models. It is confirmed that the midlatitude and high-latitude D component oscillations can be treated as a proxy of the SCW oscillations, whereas the H component oscillations exhibited some phase shifts by the propagation delay of the Pi2 waves. That is, the temporal relation between the time derivative of the AKR power and the ground Pi2 suggests that the height-integrated AKR power was modulated coherently with the SCW oscillations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-28
    Description: Ground magnetic field measurements can be mathematically related to an overhead ionospheric equivalent current. In this study we look in detail at how the global equivalent current, calculated using more than 30 years of SuperMAG magnetometer data, changes with sunlight conditions. The calculations are done using spherical harmonic analysis in quasi-dipole coordinates, a technique which leads to improved accuracy compared to previous studies. Sorting the data according to the location of the sunlight terminator and orientation of the interplanetary magnetic field (IMF) we find that the equivalent current resembles ionospheric convection patterns on the sunlit side of the terminator but not on the dark side. On the dark side, with southward IMF, the current is strongly dominated by a dawn cell and the current across the polar cap has a strong dawnward component. The contrast between the sunlit and dark side increases with increasing values of the F10.7 index, showing that increasing solar EUV flux not only changes the magnitude but also the morphology of the equivalent current system. The results are consistent with a recent study showing that Birkeland currents indirectly determine the equivalent current in darkness, and that Hall currents dominate in sunlight. This has implication for the interpretation of ground magnetic field measurements, and suggests that the magnetic disturbances at conjugate points will be asymmetrical when the solar illumination is different.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-13
    Description: [1]  In the present study we observationally address the role of ionospheric conductivity in the solar wind-magnetosphere coupling in terms of global field-aligned currents (FACs). Solar EUV irradiance changes during a solar cycle, and so does its contribution to the ionospheric conductivity. We statistically examine how, under fixed external conditions, the intensities of the R1 and R2 currents and their demarcation latitude depend on solar activity (F10.7). An emphasis is placed on nightside FACs in the dark hemisphere. The result shows that for fixed ranges of interplanetary electric field, the nightside FACs are more intense for higher solar activity irrespective of their polarities or local times. It is also found that the R1-R2 pair, therefore the auroral oval, moves equatorward as the solar activity increases. For both current intensity and latitude, the dependence on F10.7 is more sensitive at smaller F10.7 and it levels off with increasing F10.7. The intensities of dayside FACs reveal similar F10.7 dependence as expected from the enhancement of the local ionospheric conductance. Interestingly, they also move equatorward with increasing solar activity. It is expected from force balance that as the dayside R1 current becomes more intense with increasing solar activity, the magnetosphere shrinks on the day side and expands on the night side. This configurational change of the magnetosphere presumably affects the energy transport from the solar wind to the magnetosphere, although its details still remain to be understood. We conclude that the ionospheric conductivity actively affects the solar wind-magnetosphere-ionosphere coupling.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...