ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-03
    Description: The drivers of spring and summer variability within the coastal ocean east of Cape Cod, Massachusetts, a critical link between the Gulf of Maine and Mid-Atlantic Bight, are investigated using two years of shipboard and moored hydrographic and velocity observations from 2010 and 2011. The observations reveal sharp differences in the spring transition and along-shelf circulation due to variable freshwater and meteorological forcing, along with along-shelf pressure gradients. The role of the along-shelf pressure gradient is inferred using in situ observations of turbulent momentum flux, or Reynolds stresses, estimated from the ADCP-based velocities using recently developed methods and an inversion of the along-shelf momentum balance. During spring, the locally relevant along-shelf pressure gradient contains a sizable component that is not coupled to the along-shelf winds and often opposes the regional sea level gradient. Together with the winds, local pressure gradients dominate along-shelf transport variability during spring, while density-driven geostrophic flows appear to match the contribution of the local winds during summer. These results suggest that local effects along the Outer Cape have the potential to cause significant changes in exchange between the basins. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-29
    Description: Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract Circulation patterns over the inner continental shelf can be spatially complex and highly variable in time. However, few studies have examined alongshore variability over short scales of kilometers or less. To observe inner‐shelf bottom temperatures with high (5‐m) horizontal resolution, a fiber‐optic distributed temperature sensing system was deployed along a 5‐km‐long portion of the 15‐m isobath within a larger‐scale mooring array south of Martha's Vineyard, MA. Over the span of 4 months, variability at a range of scales was observed along the cable over time periods of less than a day. Notably, rapid cooling events propagated down the cable away from a tidal mixing front, showing that propagating fronts on the inner shelf can be generated locally near shallow bathymetric features in addition to remote offshore locations. Propagation velocities of observed fronts were influenced by background tidal currents in the alongshore component and show a weak correlation with theoretical gravity current speeds in the cross‐shore component. These events provide a source of cold, dense water into the inner shelf. However, differences in the magnitude and frequency of cooling events at sites separated by a few kilometers in the alongshore direction suggest that the characteristics of small‐scale variability can vary dramatically and can result in differential fluxes of water, heat, and other tracers. Thus, under stratified conditions, prolonged subsurface observations with high spatial and temporal resolution are needed to characterize the implications of three‐dimensional circulation patterns on exchange, especially in regions where the coastline and isobaths are not straight.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-10
    Description: This study examines the spatial variability of transport within the inner shelf south of Martha's Vineyard Massachusetts, its time and space dependence, and its importance to the total volume exchanged between the nearshore and the coastal ocean. The exchange of water across the inner shelf is often considered to be driven primarily by wind forcing, yet the effects of small-scale O(1-10 km) variability on the total exchange have not been well quantified. Using a combination of high-resolution HF radar-based surface currents and a dense array of moorings to document the lateral variability of across-shelf exchange, the cumulative wind-driven across-shelf transport over the summer stratified period was less than the volume of the inner-shelf onshore of the 25-m isobath. Along-shelf variations in the wind-driven exchange were as large as the spatial mean of the wind-driven exchange. A spatially varying time-averaged circulation caused by tidal rectification resulted in across-shelf exchange larger in magnitude than, and independent of, the integrated wind-forced exchange. Coherent submesoscale eddies also occurred frequently within the domain due to flow-topography effects onshore and horizontal density gradients offshore, generally with lifespans shorter than 10 hours, diameters smaller than 6 km, and vertical depths shallower than 10 meters. The across-shelf volume transport due to eddies, estimated by seeding particles within the surface current fields, was more than half the wind-driven depth-dependent exchange. Thus, accounting for the potential coherent along-shelf variability present over the inner-shelf can significantly increase estimates of the across-shelf transfer of water masses and particles. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...