ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-07
    Description: Movement of soil moisture associated with tree root-water uptake is ecologically important but technically challenging to measure. Here, the self-potential (SP) method, a passive electrical geophysical method, is used to characterize water flow in situ. Unlike tensiometers, which use a measurement of state (i.e., matric pressure) at two locations to infer fluid flow, the SP method directly measures signals generated by water movement. We collected SP measurements in a two-dimensional array at the base of a Douglas-fir tree (Pseudotsuga menziesii) in the H.J. Andrews Experimental Forest in western Oregon over 5 months to provide insight on the propagation of transpiration signals into the subsurface under variable soil moisture. During dry conditions, SP data appear to show downward unsaturated flow, whereas nearby tensiometer data appear to suggest upward flow during this period. After the trees enter dormancy in the fall, precipitation-induced vertical flow dominates in the SP and tensiometer data. Diel variations in SP data correspond to periods of tree transpiration. Changes in volumetric water content occurring from soil moisture movement during transpiration are not large enough to appear in volumetric water content data. Fluid flow and electrokinetic coupling (i.e., electrical potential distribution) were simulated using COMSOL Multiphysics to explore the system controls on field data. The coupled model, which included a root-water uptake term, reproduced components of both the long-term and diel variations in SP measurements, thus indicating that SP has potential to provide spatially and temporally dense measurements of transpiration-induced changes in water flow. This manuscript presents the first SP measurements focusing on the movement of soil moisture in response to tree transpiration. © 2019 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...