ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-12
    Description: The biogenic carbonate hard parts of fossil bivalves, cephalopods and brachiopods are amongst the most widely exploited marine archives of Phanerozoic environmental and climate dynamics research. The advent of novel analytical tools has led many workers to explore non-traditional geochemical and petrographic proxies and work performed in neighbouring disciplines sheds light on the complex biomineralization strategies applied by these organisms. These considerations form a strong motivation to review the potential and problems related to the compilation and interpretation of proxy data from bivalve, cephalopod and brachiopod hard parts from the viewpoint of the sedimentologist and palaeoceanographer. Specific focus is on the complex biomineralization pathways of a given dissolved ion or food particle from its aquatic environment via the digestion and biomineralization apparatus in molluscs and brachiopods and its incorporation into a biomineral. Given that molluscs and brachiopods do not secrete their hard parts from seawater but rather from their mantle and periostracum, this paper evaluates differences and similarities of seawater versus that of body fluids. Cephalopods, bivalves and brachiopods exert a strong biological control on biomineralization that, to some degree, may buffer their shell geochemistry against secular changes in seawater chemistry. Disordered (amorphous) calcium carbonate precursor phases, later transformed to crystalline biominerals, may be significant in carbonate archive research due to expected geochemical offset relative to the direct precipitation of stable phases. A reasonable level of understanding of the related mechanisms is thus crucial for those who use these skeletal hard parts as archives of the palaeo-environment. The impact of what is commonly referred to as ‘biological factors’ on the geochemistry of mollusc and brachiopod hard parts is explored for conventional isotope systems such as carbon, oxygen, strontium and traditionally used element to calcium ratios. In particular, the often used δ 13 C carb or the Mg/Ca and Sr/Ca elemental proxies are fraught with problems. An interesting new research field represents the analysis, calibration and application of non-traditional proxies to mollusc and brachiopod hard parts. Examples include the carbonate clumped isotope (Δ 47 ) approach and the analysis of the isotopes of Ca, Mg, N, Li, S or element to Ca ratios such as Li/Ca or B/Ca and rare earth elements. Based on considerations discussed here, a series of “do's and don'ts” in mollusc and brachiopod archive research are proposed and suggestions for future work are presented. In essence, the suggestions proposed here include experimental work (also field experiments) making use of recent archive organisms or, where possible, a reasonable recent analogue in the case of extinct groups. Moreover, the detailed understanding of the architecture of mollusc and brachiopod hard parts and their ultra-structures must guide sampling strategies for geochemical analyses. Where feasible, a detailed understanding of the diagenetic pathways and the application of multi-proxy and multi-archive approaches should form the foundation of fossil carbonate archive research. The uncritical compilation of large data sets from various carbonate shelled organisms collected at different locations is not encouraged. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-15
    Description: Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre-scale lithofacies heterogeneity was captured and modelled using closely-spaced sections. Ten lithofacies, deposited in a shallow-water carbonate-dominated ramp, were recognized and their dimensions and associations were documented. Field data, including height sections, were georeferenced and input into the model. Four models were built in the present study. Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter-well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. Model A is used as the base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a powerful tool for modelling well-defined spatial facies relationships. However, in shallow-water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow-water carbonate modelling methods.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract Ancient evaporite deposits are geological archives of depositional environments characterized by a long‐term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia (‛Rosetta Marble’) — characterized by their exceptional morphological preservation — and their ‛marine’ geochemical signatures are described and interpreted in a process‐oriented context. These rocks recorded Late Cretaceous high‐pressure/low‐temperature, subduction‐related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre‐scale, rock‐forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon‐bedded cherts in the distal portions are interpreted as a two type‐of‐seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling‐induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta‐selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous sea water signatures. Possible sources for the 13C‐enriched (mean 2·2‰) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component‐specific analysis of a rock slab display isotopic variances between meta‐selenite crystals (mean δ13C 2·2‰) and host matrix (mean δ13C 1·3‰). The Cretaceous evaporite‐pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto‐Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best‐preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta‐selenite in deep time. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-22
    Description: Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well-defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry ( δ 13 C, δ 18 O and δ 26 Mg) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis , was cultured (from early juvenile stages to one year of age) at four pH regimes (pH NBS 7.2 to pH 8.0). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low pH environments show patches of disordered calcitic fibre orientation in otherwise well-structured shells. Furthermore, the electron backscatter diffraction analyses reveal that under acidified conditions, the c-axis of the calcite prisms exhibit a bi-modal or multi-modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, we find at present no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well-preserved fossil shell material from selected time intervals requires additional work. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-10-12
    Description: Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre-scale lithofacies heterogeneity was captured and modelled using closely-spaced sections. Ten lithofacies, deposited in a shallow-water carbonate-dominated ramp, were recognized and their dimensions and associations were documented. Field data including height sections were georeferenced and input into the model. Four models were built in the present study. The Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter-well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. The Model A is used as base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a power tool for modelling well-defined spatial facies relationships. However, in shallow-water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow-water carbonate modelling methods.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-17
    Description: Elemental concentrations in Phanerozoic seawater are known to fluctuate both in time and space. With regard to carbonates precipitated from marine fluids, elemental concentrations in the carbonate crystal lattice are affected by a complex array of equilibrium and non-equilibrium as well as post-depositional alteration processes. In order to assess the potential of carbonate elemental chemostratigraphy, seven Upper Jurassic sections were investigated along a proximal to distal transect across the south-east Iberian palaeo-margin. The aim was to explore stratigraphic and spatial variations in Ca, Sr, Mg, Fe and Mn elemental abundances. The epicontinental geochemical record is influenced by the combination of continental runoff and a significant diagenetic overprint. In contrast, the epioceanic geochemical record agrees with reconstructed open marine sea water values, reflecting a moderate degree of syn-depositional to early marine pore water diagenesis. Establishing a fair degree of preservation of matrix micrite, a thorough statistical approach was applied and elemental associations tested for their environmental significance. Principal component and hierarchical cluster analyses revealed a persistent relation between carbonate Mg, Fe and Sr abundances. Processes related to early diagenetic nodulation in Ammonitico Rosso facies are most likely to account for the incorporation of these elements in the calcium carbonate lattice. The clear decoupling of carbonate manganese abundance with respect to the remaining elements is documented and related to high sea floor spreading rates and hydrothermal activity during the Late Jurassic. The investigation of potential time-fluctuation of geochemical patterns was approached through variogram computation. The observed temporal behaviour is most likely to be forced by relative sea-level dynamics, reflecting Late Jurassic palaeoceanographic conditions and potential planetary interactions. The data obtained in this study highlight the utility of elemental data from carbonate matrix micrites as geochemical proxies for studying the influence of remote trigger factors. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-18
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-24
    Description: The earliest diagenetic post mortem exposure of biogenic carbonates at the sea floor and in the uppermost sediment column results in the colonization of hard-part surfaces by bacterial communities. Some of the metabolic redox processes related to these communities have the potential to alter carbonate shell properties, and hence affect earliest diagenetic pathways with significant consequences for archive data. During a three-month in vitro study, shell subsamples of the ocean quahog Arctica islandica (Linnaeus, 1767) were incubated in natural anoxic sediment slurries and bacterial culture medium of the heterotrophic Shewanella sediminis HAW-EB3. Bulk analyses of the liquid media from the Shewanella sediminis incubation revealed an over ten-fold increase in total alkalinity, dissolved inorganic carbon and Ω Aragonite , and the alteration of the Mg/Ca, Mg/Sr and Sr/Ca ratios relative to control incubations without cultures. Ion ratios were most affected in the incubation with anoxic sediment, depicting a 25% decrease in Mg/Ca relative to the control. Shell-sample surfaces that were exposed to both incubations displayed visible surface dissolution features, and an 8 wt% loss in calcium content. No such alteration features were detected in control shells. Apparently, alteration of shell-carbonate properties was induced by microbially-driven decomposition of shell intercrystalline organic constituents and subsequent opening of pathways for pore-fluid – crystal exchange. This study illustrates the potential influence of benthic bacterial metabolism on biogenic carbonate archives during the initial stages of diagenetic alteration within a relatively short experimental duration of only three months. These results suggest that foremost the biological effect of bacterial cation adsorption on divalent-cation ratios has the potential to complicate proxy interpretation. Results shown here highlight the necessity to consider bacterial metabolic activities in marine sediments for the interpretation of palaeo-environmental proxies from shell carbonate archives. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Neoproterozoic marine dolomite cements represent reliable, albeit complex archives of their palaeoenvironment. Petrological and high‐resolution geochemical data from well‐preserved fibrous dolomite and pyrite in the upper Ediacaran (ca 551.1 to 548.0 Ma) Dengying Formation in south‐west China are presented and discussed here. The aim of this research is to reconstruct the redox state of late Ediacaran shallow seawater and porewater in the Sichuan Basin using early marine diagenetic fabrics. Based on crystalline texture and axis, four basic types of fibrous dolomite cements formed penecontemporaneously in a microbialite reef setting at the platform margin: (i) bladed dolomites (replacement from a high‐Mg calcite precursor); (ii) fascicular fast dolomites (replacement from an aragonitic precursor); (iii) fascicular slow dolomites; and (iv) radial slow dolomites. The latter two fabrics are considered direct marine porewater precipitates due to their length‐slow character, cathodoluminescent zonation, and enriched copper and cobalt concentrations. Marine cements yield rare earth element and yttrium (REY) patterns comparable to modern seawater and represent a refined set of archive data relative to previously published bulk dolostones. Redox‐sensitive elements and cathodoluminescence indicate that the fascicular fast dolomites formed in suboxic seawater, while fascicular slow and radial slow dolomites formed in euxinic marine porewaters. Microbial sulphate reduction during the formation of fascicular slow and radial slow dolomites is recognized by nanometre‐scale spheroidal ankerite and sulphur‐containing dolomite, and intergrown pyrite grains with U‐shaped δ34S transects. Data shown here suggest predominantly suboxic shallow late Ediacaran seawater and euxinic marine porewaters, with microbial activity promoting the direct precipitation of dolomite.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-07
    Description: For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre-Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18 O-depleted fluids for durations between two and twenty weeks. Alteration was documented using X-ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ 47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ 18 O signature supports transformation via dissolution and re-precipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple-blue luminescence with orange bands. The δ 18 O and Δ 47 signatures reveal exchange with the aqueous fluid, whereas δ 13 C remains unaltered in all experiments, indicating a carbonate-buffered system. Clumped isotope temperatures in high temperature experiments show compositions in broad agreement with the measured temperature. Experimentally-induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow-up experiments. This article is protected by copyright. All rights reserved.
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...