ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Tectonics, 37 (10). pp. 3352-3377.
    Publication Date: 2021-03-19
    Description: The Alboran Basin in the westernmost Mediterranean hosts the orogenic boundary between the Iberian and African plates. Although numerous geophysical studies of crustal structure onshore Iberia have been carried out during the last decade, the crustal structure of the Alboran Basin has comparatively been poorly studied. We analyze crustal‐scale images of a grid of new and reprocessed multichannel seismic profiles showing the tectonic structure and variations in the reflective character of the crust of the basin. The nature of the distinct domains has been ground‐truthed using available basement samples from drilling and dredging. Our results reveal four different crustal types ‐domains‐ of the Alboran Basin: a) a thin continental crust underneath the West Alboran and Malaga basins, which transitions to b) a magmatic arc crust in the central part of the Alboran Sea and the East Alboran Basin, c) the North‐African continental crust containing the Pytheas and Habibas sub‐basins, and d) the oceanic crust in the transition towards the Algero‐Balearic Basin. The Alboran Basin crust is configured in a fore‐arc basin (West Alboran and Malaga basins), a magmatic arc (central and East Alboran), and a back‐arc system in the easternmost part of the East Alboran Basin and mainly Algero‐Balearic Basin. The North‐African continental crust is influenced by arc‐related magmatism along its edge, and was probably affected by strike‐slip tectonics during westward migration of the Miocene subduction system. The distribution of active tectonic structures in the current compressional setting generally corresponds to boundaries between domains, possibly representing inherited lithospheric‐scale weak structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: In continental settings, seismic failure is generally restricted to crustal depth. Crustal structure is therefore an important proxy to evaluate seismic hazard of continental fault systems. Here we present a seismic velocity model across the Gibraltar Arc System, from the Eurasian Betics Range (South Iberian margin), across offshore East Alboran and Pytheas (African margin) basins, and ending onshore in North Morocco. Our results reveal the nature and configuration of the crust supporting the coexistence of three different crustal domains: the continental crust of the Betics, the continental crust of the Pytheas Basin (south Alboran Basin) and onshore Morocco, and a distinct domain formed of magmatic arc crust under the East Alboran Basin. The magmatic arc under the East Alboran Basin is characterized by a velocity structure containing a relatively high‐velocity lower crust (~7 km/s) bounded at the top and base by reflections. The lateral extension of this crust is mapped integrating a second perpendicular wide‐angle seismic profile along the Eastern Alboran basin, together with basement samples, multibeam bathymetry, and a grid of deep‐penetrating multichannel seismic profiles. The transition between crustal domains is currently unrelated to extensional and magmatic processes that formed the basin. The abrupt transition zones between the different crustal domains support that they are bounded by crustal‐scale active fault systems that reactivate inherited structures. Seismicity in the area is constrained to upper‐middle crust depths, and most earthquakes nucleate outside of the magmatic arc domain. Key Points New velocity model reveals the lithospheric structure under the Betics (South Iberia), the Alboran Basin and the North African margin The East Alboran Basin is floored by magmatic arc crust, while the southern area of the Alboran Basin is floored by continental crust Seismic activity is constrained to the upper‐middle continental crust. Crustal domains are likely bounded by active faults
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Oceanic transform faults and fracture zones represent major bathymetric features that keep the records of past and present strike‐slip motion along conservative plate boundaries. Although they play an important role in ridge segmentation and evolution of the lithosphere, their structural characteristics, and their variation in space and time, are poorly understood. To address some of the unknowns, we conducted interdisciplinary geophysical studies in the equatorial Atlantic Ocean, the region where some of the most prominent transform discontinuities have been developing. Here we present the results of the data analysis in the vicinity of the Chain Fracture Zone (FZ), on the South American Plate. The crustal structure across the Chain FZ, at the contact between ~10 and 24 Ma oceanic lithosphere, is sampled along seismic reflection and refraction profiles. We observe that the crustal thickness within and across the Chain FZ ranges from ~4.6‐5.9 km, which compares with the observations reported for slow‐slipping transform discontinuities globally. We attribute this presence of close to normal oceanic crustal thickness within fracture zones to the mechanism of lateral dike propagation, previously considered to be valid only in fast‐slipping environments. Furthermore, the combination of our results with other datasets enabled us to extend the observations to morpho‐tectonic characteristics on a regional scale. Our broader view suggests that the formation of the transverse ridge is closely associated with a global plate reorientation that was also responsible for the propagation and for shaping lower‐order Mid‐Atlantic Ridge segmentation around the equator.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South (LSF) strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Plate tectonics characterize transform faults as conservative plate boundaries where the lithosphere is neither created nor destroyed. In the Atlantic, both transform faults and their inactive traces, fracture zones, are interpreted to be structurally heterogeneous, representing thin, intensely fractured, and hydrothermally altered basaltic crust overlying serpentinized mantle. This view, however, has recently been challenged. Instead, transform zone crust might be magmatically augmented at ridge-transform intersections before becoming a fracture zone. Here, we present constraints on the structure of oceanic crust from seismic refraction and wide-angle data obtained along and across the St. Paul fracture zone near 18°W in the equatorial Atlantic Ocean. Most notably, both crust along the fracture zone and away from it shows an almost uniform thickness of 5-6 km, closely resembling normal oceanic crust. Further, a well-defined upper mantle refraction branch supports a normal mantle velocity of 8 km/s along the fracture zone valley. Therefore, the St. Paul fracture zone reflects magmatically accreted crust instead of the anomalous hydrated lithosphere. Little variation in crustal thickness and velocity structure along a 200 km long section across the fracture zone suggests that distance to a transform fault had negligible impact on crustal accretion. Alternatively, it could also indicate that a second phase of magmatic accretion at the proximal ridge-transform intersection overprinted features of starved magma supply occurring along transform faults. Key Points: - Seismic structure along the St. Paul fracture zone reflects magmatically accreted oceanic crust - Oceanic crust across St. Paul shows only small thickness variations, lacking evidence for regional crustal thinning near fracture zones - Magmatic nature of crust supports a mechanism where transform crust is augmented before being turned into a fracture zone
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The Hawaiian-Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long-term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean-Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous with P wave velocities 〈4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strong PmP arrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...