ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-16
    Description: During IODP Expedition 322 an interval of late Miocene (7.6 to ~9.1 Ma) tuffaceous and volcaniclastic sandstones was discovered in the Shikoku Basin (Site C0011B), Nankai region. This interval consists of bioturbated silty claystone including four 1 to 7 meters thick interbeds of tuffaceous sandstones (TST) containing 57 to 82% (by volume) pyroclasts. We use major and trace element glass compositions, as well as radiogenic isotope compositions, to show that the tuffaceous sandstones beds derived from single eruptive events, and that the majority (TST 1, 2, 3a) came from different eruptions from a similar source region, which we have identified to be the Japanese mainland, 350 km away. In particular, diagnostic trace element ratios (e.g., Th/La , Sm/La, Rb/Hf, Th/Nb, and U/Th) and isotopic data indicate a marked contribution from a mantle source beneath continental crust, which is most consistent with a Japanese mainland source and likely excludes the Izu-Bonin island arc and back-arc as a source region for the younger TST beds. Nevertheless, some of the chemical data measured on the oldest sandstone bed (TST 3b, Unit IIb) show affinity to or can clearly be attributed to an Izu-Bonin composition. While we cannot completely exclude the possibility that all TST beds derived from unknown and exotic Izu-Bonin source(s), the collected lines of evidence are most consistent with an origin from the paleo-Honshu arc for TST 1 through 3a. We therefore suggest the former collision zone between the Izu-Bonin arc and Honshu paleo-arc as the most likely region where the eruptive products entered the ocean, also concurrent with nearby (~200km) possible Miocene source areas for the tuffaceous sandstones at the paleo-NE-Honshu arc. Estimating the distribution area of the tuffaceous sandstones in the Miocene between this source region and the ~350 km distant Expedition 322, using bathymetric constraints, we calculate that the sandstone beds represent minimum erupted magma volumes between ~1 km 3 to 17 km 3 (Dense Rock Equivalent, DRE). We conclude that several large volume eruptions occurred during the Late Miocene time next to the collision zone of paleo-Honshu and Izu-Bonin arc and covered the entire Philippine Sea plate with meter-thick, sheet-like pyroclastic deposits that are now subducted in the Nankai subduction zone.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-28
    Description: Pacific drill sites offshore Central America provide the unique opportunity to study the evolution of large explosive volcanism and the geotectonic evolution of the continental margin back into the Neogene. The temporal distribution of tephra layers established by tephrochonostratigraphy in Part 1 indicates a nearly continuous highly explosive eruption record for the Costa Rican and the Nicaraguan volcanic arc within the last 8 M.y. The widely distributed marine tephra layers comprise the major fraction of the respective erupted tephra volumes and masses thus providing insights into regional and temporal variations of large-magnitude explosive eruptions along the southern Central American Volcanic Arc (CAVA). We observe three pulses of enhanced explosive magmatism between 0-1 Ma at the Cordillera Central, between 1-2 Ma at the Guanacaste and at 〉3 Ma at the Western Nicaragua segments. Averaged over the long-term the minimum erupted magma flux (per unit arc length) is ∼0.017 g/ms. Tephra ages, constrained by Ar-Ar dating and by correlation with dated terrestrial tephras, yield time-variable accumulation rates of the intercalated pelagic sediments with four prominent phases of peak sedimentation rates that relate to tectonic processes of subduction erosion. The peak rate at 〉2.3 Ma near Osa particularly relates to initial Cocos Ridge subduction which began at 2.91±0.23 Ma as inferred by the 1.5 M.y. delayed appearance of the OIB geochemical signal in tephras from Barva volcano at 1.42 Ma. Subsequent tectonic re-arrangements probably involved crustal extension on the Guanacaste segment that favored the 2-1 Ma period of unusually massive rhyolite production. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-02
    Description: We studied the tephra inventory of 18 deep sea drill sites from six DSDP/ODP legs (Legs 84, 138, 170, 202, 205, 206) and two IODP legs (Legs 334 and 344) offshore the southern Central American Volcanic Arc (CAVA). Eight drill sites are located on the incoming Cocos plate and ten drill sites on the continental slope of the Caribbean plate. In total we examined ∼840 ash-bearing horizons and identified ∼650 of these as primary ash beds of which 430 originated from the CAVA. Correlations of ash beds were established between marine cores and with terrestrial tephra deposits, using major and trace element glass compositions with respect to relative stratigraphic order. As a prerequisite for marine-terrestrial correlations we present a new geochemical data set for significant Neogene and Quaternary Costa Rican tephras. Moreover, new Ar/Ar ages for marine tephras have been determined and marine ash beds are also dated using the pelagic sedimentation rates. The resulting correlations and provenance analyses build a tephrochronostratigraphic framework for Costa Rica and Nicaragua that covers the last 〉8 Myr. We define 39 correlations of marine ash beds to specific tephra formations in Costa Rica and Nicaragua; from the 4.15 Ma Lower Sandillal Ignimbrite to the 3.5 ka Rincón de la Vieja Tephra from Costa Rica, as well as another 32 widely distributed tephra layers for which their specific region of origin along Costa Rica and Nicaragua can be constrained. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-08-01
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-15
    Print ISSN: 0932-8351
    Electronic ISSN: 1437-0999
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: We studied the tephra inventory of 18 deep sea drill sites from six DSDP/ODP legs (Legs 84, 138, 170, 202, 205, 206) and two IODP legs (Legs 334 and 344) offshore the southern Central American Volcanic Arc (CAVA). Eight drill sites are located on the incoming Cocos plate and ten drill sites on the continental slope of the Caribbean plate. In total we examined ∼840 ash-bearing horizons and identified ∼650 of these as primary ash beds of which 430 originated from the CAVA. Correlations of ash beds were established between marine cores and with terrestrial tephra deposits, using major and trace element glass compositions with respect to relative stratigraphic order. As a prerequisite for marine-terrestrial correlations we present a new geochemical data set for significant Neogene and Quaternary Costa Rican tephras. Moreover, new Ar/Ar ages for marine tephras have been determined and marine ash beds are also dated using the pelagic sedimentation rates. The resulting correlations and provenance analyses build a tephrochronostratigraphic framework for Costa Rica and Nicaragua that covers the last 〉8 Myr. We define 39 correlations of marine ash beds to specific tephra formations in Costa Rica and Nicaragua; from the 4.15 Ma Lower Sandillal Ignimbrite to the 3.5 ka Rincón de la Vieja Tephra from Costa Rica, as well as another 32 widely distributed tephra layers for which their specific region of origin along Costa Rica and Nicaragua can be constrained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-27
    Description: During IODP Expedition 322, an interval of Late Miocene (7.6 to ∼9.1 Ma) tuffaceous and volcaniclastic sandstones was discovered in the Shikoku Basin (Site C0011B), Nankai region. This interval consists of bioturbated silty claystone including four 1–7 m thick interbeds of tuffaceous sandstones (TST) containing 57–82% (by volume) pyroclasts. We use major and trace element glass compositions, as well as radiogenic isotope compositions, to show that the tuffaceous sandstones beds derived from single eruptive events, and that the majority (TST 1, 2, 3a) came from different eruptions from a similar source region, which we have identified to be the Japanese mainland, 350 km away. In particular, diagnostic trace element ratios (e.g., Th/La, Sm/La, Rb/Hf, Th/Nb, and U/Th) and isotopic data indicate a marked contribution from a mantle source beneath continental crust, which is most consistent with a Japanese mainland source and likely excludes the Izu-Bonin island arc and back arc as a source region for the younger TST beds. Nevertheless, some of the chemical data measured on the oldest sandstone bed (TST 3b, Unit IIb) show affinity to or can clearly be attributed to an Izu-Bonin composition. While we cannot completely exclude the possibility that all TST beds derived from unknown and exotic Izu-Bonin source(s), the collected lines of evidence are most consistent with an origin from the paleo-Honshu arc for TST 1 through 3a. We therefore suggest the former collision zone between the Izu-Bonin arc and Honshu paleo-arc as the most likely region where the eruptive products entered the ocean, also concurrent with nearby (∼200 km) possible Miocene source areas for the tuffaceous sandstones at the paleo-NE-Honshu arc. Estimating the distribution area of the tuffaceous sandstones in the Miocene between this source region and the ∼350 km distant Expedition 322, using bathymetric constraints, we calculate that the sandstone beds represent minimum erupted magma volumes between ∼1 and 17 km3 (Dense Rock Equivalent (DRE)). We conclude that several large volume eruptions occurred during the Late Miocene time next to the collision zone of paleo-Honshu and Izu-Bonin arc and covered the entire Philippine Sea plate with meter thick, sheet-like pyroclastic deposits that are now subducted in the Nankai subduction zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Pacific drill sites offshore Central America provide the unique opportunity to study the evolution of large explosive volcanism and the geotectonic evolution of the continental margin back into the Neogene. The temporal distribution of tephra layers established by tephrochonostratigraphy in Part 1 indicates a nearly continuous highly explosive eruption record for the Costa Rican and the Nicaraguan volcanic arc within the last 8 M.y. The widely distributed marine tephra layers comprise the major fraction of the respective erupted tephra volumes and masses thus providing insights into regional and temporal variations of large-magnitude explosive eruptions along the southern Central American Volcanic Arc (CAVA). We observe three pulses of enhanced explosive magmatism between 0-1 Ma at the Cordillera Central, between 1-2 Ma at the Guanacaste and at 〉3 Ma at the Western Nicaragua segments. Averaged over the long-term the minimum erupted magma flux (per unit arc length) is ∼0.017 g/ms. Tephra ages, constrained by Ar-Ar dating and by correlation with dated terrestrial tephras, yield time-variable accumulation rates of the intercalated pelagic sediments with four prominent phases of peak sedimentation rates that relate to tectonic processes of subduction erosion. The peak rate at 〉2.3 Ma near Osa particularly relates to initial Cocos Ridge subduction which began at 2.91±0.23 Ma as inferred by the 1.5 M.y. delayed appearance of the OIB geochemical signal in tephras from Barva volcano at 1.42 Ma. Subsequent tectonic re-arrangements probably involved crustal extension on the Guanacaste segment that favored the 2-1 Ma period of unusually massive rhyolite production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-15
    Print ISSN: 0932-8351
    Electronic ISSN: 1437-0999
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-08
    Description: We studied the tephra inventory of fourteen deep sea drill sites of three DSDP and ODP legs drilled offshore Guatemala and El Salvador (Legs 67, 84, 138), and one leg offshore Mexico (Leg 66). Marine tephra layers reach back from the Miocene to the Holocene. We identified 223 primary ash beds and correlated these between the drill sites, with regions along the volcanic arcs, and to specific eruptions known from land. In total, 24 correlations were established between marine tephra layers and to well‐known Quaternary eruptions from El Salvador and Guatemala. Additional 25 tephra layers were correlated between marine sites. Another 108 single ash layers have been assigned to source areas on land resulting in a total of 157 single eruptive events. Tephra layer correlations to independently dated terrestrial deposits provide new time markers and help to improve or confirm age models of the respective drill sites. Applying the respective sedimentation rates derived from the age models, we calculated ages for all marine ash beds. Hence, we also obtained new age estimates for eight known, but so far undated large terrestrial eruptions. Furthermore, this enables us to study the temporal evolution of explosive eruptions along the arc and we discovered five pulses of increased activity: 1) a pulse during the Quaternary, 2) a Pliocene pulse between 6 and 3 Ma, 3) a Late Miocene pulse between 10 and 7 Ma, 4) a Middle Miocene pulse between 17–11 Ma, and 5) an Early Miocene pulse (~〉21 Ma).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...