ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-30
    Description: Aquarius sea surface salinity (SSS) reveals the presence of interannual variations in the Caribbean with about 0.5 psu change between salty and fresh events, which propagate westward across that basin at an average speed of 11cm/s and are preceded by corresponding SSS anomalies east of the Lesser Antilles. These upstream SSS anomalies are produced by interannual changes in the Amazon plume. Their presence is verified using in-situ measurements from the Northwest Tropical Atlantic Station. In contrast to SSS, which displays westward propagation, SST changes almost immediately across the Caribbean, suggesting large-scale atmospheric processes have a primary role in regulating interannual SST in contrast to SSS. A global 1/10 ° mesoscale ocean model is used to quantify possible origination mechanisms of the Caribbean salinity anomalies and their fate. Simulations confirm that they are produced by anomalous horizontal salt advection, which conveys these salinity anomalies from an area east of the Lesser Antilles across the Caribbean. Anomalous horizontal advection is dominated by mean currents acting on anomalous salinity. The model suggests that interannual Caribbean salinity anomalies eventually enter the Florida Current and reach the Gulf Stream 6 to 12 months after crossing the central Caribbean. Previous studies link the origin of salinity anomalies in the Amazon plume to variations in the annual freshwater discharge from the continent. In this model interannual discharge variations are absent while simulated SSS variability is in line with observations. This suggests that interannually forced ocean dynamics plays a key role in river plume variability and its spatial dispersion. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-01
    Description: Methylation of arginine residues is an important modulator of protein function that is involved in epigenetic gene regulation, DNA damage response and RNA maturation, as well as in cellular signaling. The enzymes that catalyze this post-translational modification are called protein arginine methyltransferases (PRMTs), of which PRMT1 is the predominant enzyme. Human PRMT1 has previously been shown to occur in seven splicing isoforms, which are differentially abundant in different tissues, and have distinct substrate specificity and intracellular localization. Here we characterize a novel splicing isoform which does not affect the amino-terminus of the protein like the seven known isoforms, but rather lacks exons 8 and 9 which encode the dimerization arm of the enzyme that is essential for enzymatic activity. Consequently, the isoform does not form catalytically active oligomers with the other endogenous PRMT1 isoforms. Photobleaching experiments reveal an immobile fraction of the enzyme in the nucleus, in accordance with earlier results from our laboratory that had shown a tight association of inhibited or inactivated PRMT1 with chromatin and the nuclear scaffold. Thus, it apparently is able to bind to the same substrates as catalytically active PRMT1. This isoform is found in a variety of cell lines, but is increased in those of cancer origin or after expression of the EMT-inducing transcriptional repressor Snail1. We discuss that the novel isoform could act as a modulator of PRMT1 activity in cancer cells by acting as a competitive inhibitor that shields substrates from access to active PRMT1 oligomers. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-29
    Description: Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions, but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that 1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal), and 2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-18
    Description: [1]  Ice shelves are critical features in the debate about West Antarctic ice-sheet change and sea-level rise, both because they limit ice-discharge, and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice-shelf front has remained stable for the past six decades, past periods of ice-shelf collapse have been inferred from relict seabed ‘corrugations’ (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle, operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line, closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice-shelf extent within the last 11 k.y., implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different to today. The alternative, that corrugations were not formed in open-water, would question ice-shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation, and suggest periodic grounding of ice-shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf, nor glacier retreat, and is consistent with a ‘stable’ grounding-line throughout the Holocene.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-28
    Description: [1]  The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60° S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 x 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website ( www.ibcso.org ) and at http://dx.doi.org/10.1594/PANGAEA.805736 .
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-05
    Description: Sea surface salinity (SSS) measurements from the Aquarius/SACD satellite reveal the seasonal development of a local salinity maximum in the northwestern tropical Atlantic in boreal winter to early spring. This seasonal tropical SSS maximum, which is confirmed by comparison to in situ observations, is centered at 8°N, and is up to 0.5 psu saltier than the surrounding water despite its location in the latitude band of the highly precipitating Intertropical Convergence Zone. Its existence seems to be the result of the differing phases in the seasonal variations of Amazon discharge and ocean currents. In late boreal fall - winter, when the discharge is at its minimum, but the North Brazil Current (NBC) and its retroflection are still present, a mixture of high salinity water of equatorial and South Atlantic origin is transported along the shelf break by the NBC retroflecting into the western part of the North Equatorial Countercurrent (NECC). This salt transport produces the salty signature of the western part of the NECC, which is seen as a localized salinity maximum on satellite imagery, in contrast to the fresh signature present in summer – early fall. The seasonal slowing/reversal of the NECC in boreal spring stops this eastward salt transport, thus leading to the disappearance of this northwestern tropical SSS maximum.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract Microbial communities form the base of food webs in freshwater ecosystems, yet the interactions within these diverse assemblages are poorly understood. Based on evidence showing that primary production and respiration follow diurnal trends in lakes, we hypothesized that gene expression in freshwater microbes would have similar diel cycles. We used three 2‐d time series of metatranscriptomes to test this hypothesis in a eutrophic lake, an oligotrophic lake, and a humic lake. We identified prominent diel cycles in all three lakes, particularly in genes related to photosynthesis, sugar transport, and carbon fixation. The maximal time of expression for sugar transport genes tended to trail that of photosynthesis genes by several hours, indicating possible metabolic exchange between co‐occurring microbial lineages. These results provide an initial step in understanding sophisticated multispecies transcriptional organization within freshwater microbial communities.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-18
    Description: A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on timescales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from non-stationarity of the atmospheric transient when there is mixing. These add to tracer age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to re-interpret observed temporal trends in tracer-derived ventilation timescales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26-27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend ‒ perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-25
    Description: Sea surface salinity (SSS) from the Aquarius and SMOS satellite missions displays a steady increase of ∼1psu over the entire northwestern Atlantic shelf south of Nova Scotia during the 2011-2015. Put in the context of longer ocean profile data the results suggest that mixed layer salinity and temperature north of the Gulf Stream experience positively correlated shelf-wide interannual oscillations (1psu/2degC). Salty and warm events occur coincident with anomalous easterly-southeasterly winds and Ekman transport counteracting the mean southwestward shelf currents. They are coincident with the weakening of both branches of the Scotian Shelf Current (SSC), but only moderately correlate with shifts of the Gulf Stream North Wall. This suggests that salt advection by anomalous SSC acting on the mean salinity gradient is the primary driver regulating the transport of fresh/cold water from high latitudes. The advection mechanism imposes a connectedness of the larger-scale interannual variability in this region and its tie to atmospheric oscillations. In the second part, an analysis of 15-year long numerical simulations is presented which show 8 interannual salinity oscillations (positive and negative). Six of these are driven by the horizontal advection by slow varying currents (〉2 months), while 2 events are driven by the horizontal eddy advection (〈2 months). In line with observations, salt/warm model events correspond to anomalously weak SSC, correlate with southeasterly wind anomaly, and confirm that interannual horizontal salt advection drives the interannual salinity. Indeed, vertical exchanges provide a negative feedback, while interannual horizontal diffusion and the net surface salt flux anomalies are small. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...