ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Biogeosciences, 122 (5). pp. 1156-1174.
    Publication Date: 2020-02-06
    Description: Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 29 . pp. 812-829.
    Publication Date: 2017-12-19
    Description: An empirical function is derived for predicting the rate-depth profile of particulate organic carbon (POC) degradation in surface marine sediments including the bioturbated layer. The rate takes the form of a power law analogous to the Middelburg function. The functional parameters were optimized by simulating measured benthic O2 and NO3− fluxes at 185 stations worldwide using a diagenetic model. The novelty of this work rests with the finding that the vertically-resolved POC degradation rate in the bioturbated zone can be determined using a simple function where the POC rain rate is the governing variable. Although imperfect, the model is able to fit 71 % of paired O2 and NO3− fluxes to within 50% of measured values. It further provides realistic geochemical concentration-depth profiles, NO3− penetration depths and apparent first-order POC mineralization rate constants. The model performs less well on the continental shelf due to the high heterogeneity there. When applied to globally resolved maps of rain rate, the model predicts a global denitrification rate of 182 ± 88 Tg yr−1 of N and a POC burial rate of 107 ± 52 Tg yr−1 of C with a mean carbon burial efficiency of 6.1%. These results are in very good agreement with published values. Our proposed function is conceptually simple, requires less parameterization than multi-G type models and is suitable for non-steady state applications. It provides a basis for more accurately simulating benthic nutrient fluxes and carbonate dissolution rates in Earth system models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 29 (5). pp. 691-707.
    Publication Date: 2019-09-23
    Description: Literature data on benthic dissolved iron (DFe) fluxes (µmol m−2 d−1), bottom water oxygen concentrations (O2BW, μM), and sedimentary carbon oxidation rates (COX, mmol m−2 d−1) from water depths ranging from 80 to 3700 m were assembled. The data were analyzed with a diagenetic iron model to derive an empirical function for predicting benthic DFe fluxes: inline image where γ (= 170 µmol m−2 d−1) is the maximum flux for sediments at steady state located away from river mouths. This simple function unifies previous observations that COX and O2BW are important controls on DFe fluxes. Upscaling predicts a global DFe flux from continental margin sediments of 109 ± 55 Gmol yr−1, of which 72 Gmol yr−1 is contributed by the shelf (〈200 m) and 37 Gmol yr−1 by slope sediments (200–2000 m). The predicted deep-sea flux (〉2000 m) of 41 ± 21 Gmol yr−1 is unsupported by empirical data. Previous estimates of benthic DFe fluxes derived using global iron models are far lower (approximately 10–30 Gmol yr−1). This can be attributed to (i) inadequate treatment of the role of oxygen on benthic DFe fluxes and (ii) improper consideration of continental shelf processes due to coarse spatial resolution. Globally averaged DFe concentrations in surface waters simulated with the intermediate-complexity University of Victoria Earth System Climate Model were a factor of 2 higher with the new function. We conclude that (i) the DFe flux from marginal sediments has been underestimated in the marine iron cycle and (ii) iron scavenging in the water column is more intense than currently presumed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-28
    Description: Geochemical data (CH4, SO42−, I−, Cl−, particulate organic carbon (POC), δ13C-CH4, and δ13C-CO2) are presented from the upper 30 m of marine sediment on a tectonic submarine accretionary wedge offshore southwest Taiwan. The sampling stations covered three ridges (Tai-Nan, Yung-An, and Good Weather), each characterized by bottom simulating reflectors, acoustic turbidity, and different types of faulting and anticlines. Sulfate and iodide concentrations varied little from seawater-like values in the upper 1–3 m of sediment at all stations; a feature that is consistent with irrigation of seawater by gas bubbles rising through the soft surface sediments. Below this depth, sulfate was rapidly consumed within 5–10 m by anaerobic oxidation of methane (AOM) at the sulfate-methane transition. Carbon isotopic data imply a mainly biogenic methane source. A numerical transport-reaction model was used to identify the supply pathways of methane and estimate depth-integrated turnover rates at the three ridges. Methane gas ascending from deep layers, facilitated by thrusts and faults, was by far the dominant term in the methane budget at all sites. Differences in the proximity of the sampling sites to the faults and anticlines mainly accounted for the variability in gas fluxes and depth-integrated AOM rates. By comparison, methane produced in situ by POC degradation within the modeled sediment column was unimportant. This study demonstrates that the geochemical trends in the continental margins offshore SW Taiwan are closely related to the different geological settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Takahe seep, located on the Opouawe Bank, Hikurangi Margin, is characterized by a well-defined subsurface seismic chimney structure ca. 80,500 m2 in area. Sub-seafloor geophysical data based on acoustic anomaly layers indicated the presence of gas hydrate and free gas layers within the chimney structure. Reaction-transport modeling was applied to porewater data from 11 gravity cores to constrain methane turnover rates and benthic methane fluxes in the upper 10 m. Model results show that methane dynamics were highly variable due to transport and dissolution of ascending gas. The dissolution of gas (up to 3761 mmol m−2 yr−1) dwarfed the rate of methanogenesis within the simulated sediment column (2.6 mmol m−2 yr−1). Dissolved methane is mainly consumed by anaerobic oxidation of methane (AOM) at the base of the sulfate reduction zone and trapped by methane hydrate formation below it, with maximum rates in the central part of the chimney (946 and 2420 mmol m−2 yr−1, respectively). A seep-wide methane budget was constrained by combining the biogeochemical model results with geophysical data and led to estimates of AOM rates, gas hydrate formation and benthic dissolved methane fluxes of 3.68 × 104 mol yr−1, 73.85 × 104 mol yr−1and 1.19 × 104 mol yr−1, respectively. A much larger flux of methane probably escapes in gaseous form through focused bubble vents. The approach of linking geochemical model results with spatial geophysical data put forward here can be applied elsewhere to improve benthic methane turnover rates from limited single spot measurements to larger spatial scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: An extensive data set of biogenic silica (BSi) fluxes is presented for the Peruvian oxygen minimum zone (OMZ) at 11ºS and 12ºS. Each transect extends from the shelf to the upper slope (∼1000 m) and dissects the permanently anoxic waters between ∼200 – 500m water depth. BSi burial (2100 mmol m‐2 yr‐1) and recycling fluxes (3300 mmol m‐2 yr‐1) were highest on the shelf with mean preservation efficiencies (34±15%) that exceed the global mean of 10 – 20%. BSi preservation was highest on the inner shelf (up to 56%), decreasing to 7% and 12% under anoxic waters and below the OMZ, respectively. The data suggest that the main control on BSi preservation is the rate at which reactive BSi is transported away from undersaturated surface sediments by burial and bioturbation to the underlying saturated sediment layers where BSi dissolution is thermodynamically and/or kinetically inhibited. BSi burial across the entire Peruvian margin between 3ºS to 15ºS and down to 1000m water depth is estimated to be 0.1 – 0.2 Tmol yr‐1; equivalent to 2 – 7% of total burial on continental margins. Existing global data permit a simple relationship between BSi rain rate to the seafloor and the accumulation of unaltered BSi, giving the possibility to reconstruct rain rates and primary production from the sediment archive in addition to benthic Si turnover in global models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Porewater dissolved silicic acid (DSi) concentrations and stable Si isotope compositions (δ30Si) together with biogenic silica (bSiO2) contents of sediments in five sediment cores collected from the southern Mariana Trench are presented. These data suggest the occurrence of bSiO2 dissolution and concomitant authigenic clay formation in three bSiO2-bearing cores. A reaction-transport model constrained by the measured geochemical data was applied to quantify the rates of Si turnover. Model results predicted the greatest rates of both bSiO2 dissolution and authigenic clay formation at the trench axis core that displayed low bSiO2 contents and abundant detrital materials, suggesting that detrital materials may be a limiting factor for bSiO2 diagenesis. Model results further predicted that ∼40%–70% of DSi generated by bSiO2 dissolution is consumed by authigenic clay formation. This is the first study that demonstrates active silica diagenesis in the hadal realm and has implications for understanding benthic Si cycling in deep-sea settings. Key Points - Biogenic silica diagenesis was examined for the first time in hadal trench sediments - Availability of detrital materials may be a limiting factor for biogenic silica (bSiO2) diagenesis in bSiO2-rich sediments of the Mariana Trench - ∼40%–80% of dissolved silicic acid generated by bSiO2 dissolution is fixed by authigenic silicate formation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Bacterial sulfate reduction (SR) is often determined by radiotracer techniques using 35S‐labeled sulfate. In environments featuring simultaneous sulfide oxidation, SR can be underestimated due to re‐oxidation of 35S‐sulfide. Recycling of 35S‐tracer is expected to be high in sediment with low concentrations of pore‐water sulfide and high abundance of giant filamentous sulfur‐oxidizing bacteria (GFSOB). Here, we applied a sulfide‐spiking method, originally developed for water samples, to sediments along a shelf‐slope transect (72, 128, 243, 752 m water depth) traversing the Peruvian oxygen minimum zone. Sediment spiked with unlabeled sulfide prior to 35S‐sulfate injection to prevent radiotracer recycling was compared to unspiked sediment. At stations characterized by low natural sulfide and abundant GFSOB (128 and 243 m), the method revealed 1–3 times higher SR rates in spiked sediment. Spiking had no effect on SR in sediment with high natural sulfide despite presence of GFSOB (72 m). Bioturbated sediment devoid of GFSOB (752 m) showed elevated SR in spiked samples, likely from artificial introduction of sulfidic conditions. Sulfide oxidation rates at the 128 and 243 m station, derived from the difference in SR between spiked and unspiked sediment, approximated rates of dissimilatory nitrate reduction to ammonium by GFSOB. Gross SR contributed considerably to benthic dissolved inorganic carbon fluxes at the three shallowest station, confirming that SR is an important process for benthic carbon respirations within the oxygen minimum zone. We recommend to further explore the spiking method to capture SR in sediment featuring low sulfide concentrations and high sulfur cycling by GFSOB.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Iron is a key micronutrient controlling phytoplankton growth in vast regions of the global ocean. Despite its importance, uncertainties remain high regarding external iron source fluxes and internal cycling on a global scale. In this study, we used a global dissolved iron dataset, including GEOTRACES measurements, to constrain source and scavenging fluxes in the marine iron component of a global ocean biogeochemical model. Our model simulations tested three key uncertainties: source inputs of atmospheric soluble iron deposition (varying from 1.4–3.4 Gmol/yr), reductive sedimentary iron release (14–117 Gmol/yr), and compared a variable ligand parameterization to a constant distribution. In each simulation, scavenging rates were tuned to reproduce the observed global mean iron inventory for consistency. The variable ligand parameterization improved the global model-data misfit the most, suggesting that heterotrophic bacteria are an important source of ligands to the ocean. Model simulations containing high source fluxes of atmospheric soluble iron deposition (3.4 Gmol/yr) and reductive sedimentary iron release (114 Gmol/yr) further improved the model most notably in the surface ocean. High scavenging rates were then required to maintain the iron inventory resulting in relatively short surface and global ocean residence times of 0.83 and 7.5 years, respectively. The model simulates a tight spatial coupling between source inputs and scavenging rates, which may be too strong due to underrepresented ligands near source inputs, contributing to large uncertainties when constraining individual fluxes with dissolved iron concentrations. Model biases remain high and are discussed to help improve global marine iron cycle models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-23
    Description: Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction‐transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine‐to‐organic carbon ratios (I:C org ) in the paleo‐record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I − ) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near‐shore anoxic seawater. According to our model, the benthic I − efflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved I − is oxidized and precipitated at the sediment surface. Much of the precipitated iodine re‐dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:C org burial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:C org , which limits the utility of I:C org as a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past. Key Points The impact of early diagenesis on benthic iodine fluxes and iodine burial was quantitatively evaluated using a reaction‐transport model Dissolved iodine anomalies in the water column are indicative of benthic efflux from anoxic sediments with high organic carbon turnover Not only bottom water oxygen but also organic carbon delivery and sedimentation rate determine sedimentary iodine‐to‐organic carbon ratios
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...