ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-29
    Description: We have extended our earlier calculations of the distance to the heliospheric termination shock (HTS), which covered the period from the launch of V1 and V2 in 1977 to 2005, to the period from 2006 to 2011. During this latter period, the solar wind speed, ram pressure, and magnetic field decreased to the lowest levels in recent history, related to the sunspot minimum in 2008–2009. The HTS distance has decreased correspondingly so that V1, which was crossed by the HTS at 94 AU in late 2004, would now, in early 2011, be expected to reach the HTS at a distance of ∼80 AU, when the HTS distance would be expected to be at its minimum. Similarly, V2, which was crossed by the HTS at 84 AU in mid-2007, would, in early 2011, reach the HTS at a distance of only 74 AU. These distances, in early 2011, are ∼15% less than those at which V1 and V2 initially reached the HTS. The distance to the heliopause (HP) is more uncertain, but recent calculations place its equilibrium distance at between 1.4 and 1.6 times the HTS distance. Allowing for an additional 1 year for the HP to reach its equilibrium minimum distance relative to the HTS would mean that, assuming this distance remains a constant fraction larger than the HTS distance, the HP distance would be at its minimum distance of (1.4–1.6) × 80 AU = 112–128 AU at V1 in early 2012. At this time, V1 will be in the direction of a distance of ∼120 AU so that there is a possibility that V1 could cross the HP and enter interstellar space at the time 2012.0 ± 1 year. If the crossing does not happen during this time period, then it is unlikely that V1 will reach this defining boundary before about 2016 because of the expected outward motion of the HTS and the HP toward their more normal distances of 85–96 and ∼120–140 AU, coincident with the maximum of the new sunspot cycle.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-23
    Description: We describe our 3-D, time-dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real-time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...