ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract The South Central United States is a hot spot for anthropogenic methane (CH4) emissions, with contributions from the oil/gas (O&G) and animal agriculture sectors. During frontal weather events, airflow combines enhancements from these emissions into a large plume. In this study, we take CH4 and ethane (C2H6) observations from the Atmospheric Carbon and Transport‐America campaign and adjust O&G and animal agriculture emissions such that modeled CH4 and C2H6 enhancements match the observed plume. Results from the joint CH4‐C2H6 optimization indicate that emissions from the O&G sector are 1.8 ± 0.7 (2σ) times larger than EPA inventory estimates. These results match synthesis work from recent literature and reject the possibility that this increase compared to inventories is due to a potential bias in daytime‐only measurements of these facilities. Successful modeling from this study raises the possibility of using trace gas measurements along frontal crossings to solve for emissions in other regions of the United States.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-10
    Description: Most runoff analyses using a grid-based distributed model use one parameter group calibrated at the outlet of a watershed, instead of dividing the watershed into subwatersheds. Significant differences between the observed value and the simulation result of the subwatersheds can occur if just one parameter group is used in all subwatersheds that have different hydrological characteristics from each other. Therefore, to improve the simulation results of the subwatersheds within a watershed, a model calibrated at every subwatershed needs to be used to reflect the characteristics of each subwatershed. In this study, different parameter groups were set up for one or two sites using a distributed model, the GRM (Grid based Rainfall-runoff Model), and the evaluations were based on the results of rainfall-runoff analysis, which uses a multi-site calibration (MSC) technique to calibrate the model at the outlet of each site. The Hyangseok watershed in Naeseong River, which is a tributary of Nakdong River in Korea, was chosen as the study area. The watershed was divided into 5 subwatersheds each with a subwatershed outlet that was applied to the calibration sites. The MSC was applied for 5 cases. When a site was added for calibration in a watershed, the runoff simulation showed better results than the calibration of only one site at the most downstream area of the watershed. The MSC approach could improve the simulation results on the calibrated sites and even on the non-calibrated sites, and the effects of MSC improved when the calibrated site was closer to the runoff site. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...