ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract During September 2016 an ice‐free Beaufort Sea was observed for only the second time. Like previous regional sea ice minima (1998, 2008 and 2012), seasonal preconditioning of the ice pack towards younger, thinner ice types contributed to premature breakup that accelerated the ice‐albedo feedback and enhanced summer melt. In 2016, anomalously high sea ice export and ice pack divergence during February and April promoted the unusual widespread formation of new ice within the Beaufort. Thin ice types reached a peak regional concentration of 30% in March, when the ice cover is typically dominated by thick first‐year and multiyear sea ice. Combined CryoSat‐2 and SMOS data indicate that the regional ice volume plateaued from December to March as export offset ice growth and ultimately culminated in a ‐30% volume anomaly in April 2016. This atypically thin ice cover broke up 7 weeks earlier than average, with open water not only forming within coastal flaw leads but also within the offshore pack ice. By July 2016, vast areas of open water within the highly fractured ice cover accelerated the ice‐albedo feedback and led to rapid melt. Though maintaining a partial ice cover during summer throughout the observational record, significant negative trends in September sea ice area within the Beaufort are now punctuated by two recent ice‐free Septembers (2012, 2016). As the Beaufort transitions towards a seasonally ice‐free sea, we examine the role of winter preconditioning through sea ice transport and its growing importance within an increasingly seasonal and mobile Arctic ice cover.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-15
    Description: During the record September 2012 sea ice minimum the Beaufort Sea became ice free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal ice coverage that contributed to negative sea ice anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea ice loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea ice extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea ice minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner ice pack. Significant negative trends in sea ice concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea ice reductions have fostered a significant trend of +12.9 MJ m −2 year −1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m −2 year −1 . Overall through preconditioning towards a younger, thinner ice pack the Beaufort Sea has become increasingly susceptible to increased sea ice loss that may render it ice free more frequently in coming years. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-12
    Description: The seasonal ice cover plays an important role in the climate system limiting the exchange of heat and momentum across the air-water interface. Among other factors, sea ice is sensitive to the ocean heat flux. In this study we use in situ oceanographic, sea ice and meteorological data collected during winter 2013/2014 in Young Sound (YS) fjord in Northeast Greenland to estimate the ocean heat flux to the landfast ice cover. During the preceding ice-free summer, incident solar radiation caused sea surface temperatures of up to 5-6°C. Subsequently this heat was transferred down to the intermediate depths, but returned to the surface and retarded ice growth throughout winter. Two different approaches were used to estimate the ocean heat fluxes; (i) a residual method based on a 1-D thermodynamic ice growth model and (ii) a bulk parameterization using friction velocities and available heat content of water beneath the ice. The average heat flux in the inner YS varied from 13 Wm −2 in October-December to less than 2 W m −2 in January-May. An average heat flux of 9 Wm −2 was calculated for the outer YS. Moreover, we show that the upward heat flux in the outer fjord is strongly modulated by surface outflow, which produced two maxima in heat flux (up to 18-24 Wm −2 ) during 26 December to 27 January and from 11 February to 14 March. By May 2014, the upward ocean heat flux reduced the landfast ice thickness by 18% and 24% in the inner and outer YS, respectively. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-27
    Description: The last decade has witnessed the nine lowest Arctic September sea ice extents in the observational record. It also forms the most recent third of the long-term trend in that record, which reached -13.4% decade −1 in 2015. While hemispheric analyses paint a compelling picture of sea ice loss across the Arctic, the situation with multiyear ice in the Beaufort Sea is particularly dire. This study was undertaken in light of substantial changes that have occurred in the extent of summer multiyear sea ice in the Arctic inferred from the passive microwave record. To better elucidate these changes at a sub-regional scale, we use data from the Canadian Ice Service archive, the most direct observations of sea ice stage-of-development available. We also build upon the only previous sea ice climatological analysis for Canada's western Arctic region by sea ice stage-of-development that ended in 2004. The annual evolution of sea ice by stage of development in Canada's western Arctic changed dramatically between 1983 and 2014. The rate of these changes and their spatial prevalence were most prominent in the last decade. In summer, total sea ice loss occurred via reductions in old and first year sea ice over increasingly large areas and over more months per year. Resultant delay of thermodynamic freeze up has increased the annual open water duration in the study region. The winter sea ice cover was increasingly composed of first-year sea ice at the expense of old ice. Breakup timing has not significantly changed in the region. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-19
    Description: Sea ice motion is an important element in mass balance calculations, ice thermodynamic modeling, ice management plans for industry, and ecosystems studies. In the historical literature, sea ice motion in the Beaufort Sea was characterized by a predominantly anticyclonic motion during winter months, with episodic reversals to cyclonic activity during summer. However, recent studies have shown an increase in cyclonic activity throughout the annual cycle. In this paper we examine circulation in the Beaufort Sea based on the trajectories of 22 ice beacons launched in the Franklin Bay area during the International Polar Year - Circumpolar Flaw Lead (IPY-CFL) study during an over-wintering experiment in 2007–2008. Dispersion characteristics of ice motion show that absolute zonal dispersion follows a t2 scaling law characteristic of advection associated with Beaufort Gyre circulation, whereas absolute meridional dispersion follows a scaling law of t5/4 characteristic of floaters and dispersion in 2-D turbulence. Temporal autocorrelations of ice velocity fluctuations highlight definitive timescales with values of 1.2 (0.7) days in the zonal (meridional) direction. Near-Gaussian behavior is reflected in higher-order moments for ice velocity fluctuation probability density functions (pdfs). Non-Gaussian behavior for absolute displacement pdfs indicates spatial heterogeneity in the ice motion fields. Atmospheric forcing of sea ice is explored through analysis of daily North American Regional Reanalysis and in situ wind data, where it is shown that ice in the CFL study region travels with an average speed of approximately 0.2% and an average angle of 51.5° to the right of the surface winds during the 2007–2008 winter. The results from this analysis further demonstrate seasonality in ice drift to wind ratios and angles that corresponds to stress buoy data indicative of increases in internal ice stress and connectivity due to consolidation of the seasonal ice zone to the coast and perennial ice pack during winter in the Beaufort Sea region.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract A portion of the freshwater transport through Fram Strait consists of low‐salinity Pacific‐derived Arctic water flowing southward along the east coast of Greenland. The pathways of this water are currently unclear. An Ice Tethered Profiler deployed over the southeastern Wandel Sea shelf (northeast Greenland) in May 2015 collected a profile every 3 hr for a year recording conductivity‐temperature‐depth (CTD) and Colored Dissolved Organic Matter (CDOM) fluorescence. This was accompanied by velocity observations. The CTD data revealed that the subsurface water (~15–85 m depth) characterized by high CDOM resembles the “cold Halostad” in the Canada Basin formed by the injection of Pacific water. A coastal branch of the Pacific water outflow from the Arctic Ocean supplies the Wandel Sea halostad, which shows a clear seasonal pattern. From July to October–November, the halostad is shallow, more saline, warmer, and with less CDOM. Conversely, from November to April, the halostad deepens, cools, freshens and CDOM increases, likely indicating a higher fraction of Pacific winter water. The CTD surveys, wind and current data, and numerical simulations show that the seasonal variation of wind over the continental slope likely controls seasonal changes of this intermediate water layer. Over northeast Greenland, winter winds have a northerly component from November to April, favoring Ekman transport of the Pacific‐derived water to the Wandel Sea shelf. In contrast, the prevailing southerly summer winds result in retreat of the Pacific‐derived water off the shelf. The landfast ice off‐slope extension modifies wind‐forcing disrupting seasonal patterns.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-06
    Description: Heavy ice conditions along Canada's east coast during Spring 2017 presented hazardous conditions for the maritime industry and required the Canadian Coast Guard to pull its research icebreaker, CCGS Amundsen, off its scientific cruise to provide ice escort services and conduct search and rescue operations along Newfoundland's northeast coast. Greater ice concentrations and a thicker ice pack than is typical of this area created the anomalous ice cover. Within this paper we present in situ observations of the ice cover, confirming that pieces of multiyear sea ice from the high Arctic were present within the ice cover, and subsequently examine the transport pathway that connects the export of thick multiyear sea ice from the Lincoln Sea and Canadian Arctic Archipelago to coastal communities in Newfoundland. We conclude with a discussion on how an increasingly mobile Arctic sea ice cover may increase these ice hazards in the south.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-01
    Description: Six ice beacons deployed in the Beaufort Sea during August 2011 tracked the anomalous export of multiyear sea ice from the Chukchi Sea through the Bering Strait to the Bering Sea between November 2011 and May 2012. These are the first observations in 34 years of ice beacon export through the Bering Strait. Using 34 years of passive microwave derived ice motion fields we find that during 2011-2012 southward ice motion in the Chukchi Sea persisted for a record six of seven months and that sea ice speeds were significantly faster than the long term mean. The combination of increased ice speeds and reduced likelihood of ice arch development through the strait culminated in the record export of 13.5 x 10 3 km 2 of sea ice through the Bering Strait. Monthly sea level pressure fields, dominated by an Aleutian Low and Siberian High, show anomalies in December and January played a role in initiating this event and forced multiyear ice into the southern Chukchi Sea. However these variations were small and typical of this area, yet we find no evidence of a similar export event in the last 34 years even though the forcing was similar to the climatology. This leads us to attribute this event to a change in the responsiveness of the Arctic ice pack to typical forcing mechanisms.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-01-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...