ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-08
    Description: We analyzed the October 5th, 2008, M w 6.6 Nura earthquake, which occurred in the border triangle between Kyrgyzstan, Tajikistan and China, and its aftershock series based on locally recorded seismic data. More than 3000 aftershocks were detected and located, using a double-difference technique and a regional 3D velocity model. Moment tensors for the main event and the 42 largest aftershocks were determined by full-waveform inversion of long-period displacement seismograms. The Nura main shock was a shallow (~3.4 km deep) reverse-faulting event and occurred on an  ~ E-striking rupture plane situated east of the Alai Valley, along the Pamir Frontal Thrust of the Trans Alai Range, the leading edge of the Pamir Thrust System. Its presumed rupture plane dips steeply (~59°) southwards. The aftershocks constitute several distinct clusters that can be attributed to the activation of an array of individual faults including the one that was presumably broken by the main shock. Background seismicity occured mainly further south, behind the crest of the Trans Alai range, in an ~ E-trending zone of dextral transpressional motion in the interior of the Pamir Thrust System. We show that nearly all reactivated structures lie in regions that experienced an increase in Coulomb stress due to the main shock rupture. The Nura earthquake sequence indicates slip partitioning between north-south shortening that creates large earthquakes along the Pamir Frontal Thrust, and lateral movement in the interior of the Pamir Thrust system.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-31
    Description: On September 16, 2015, the M W =8.2 Illapel megathrust earthquake ruptured the Central Chilean margin. Combining inversions of displacement measurements and seismic waveforms with high frequency (HF) teleseismic backprojection we derive a comprehensive description of the rupture, which also predicts deep-ocean tsunami waveheights. We further determine moment tensors and obtain accurate depth estimates for the aftershock sequence. The earthquake nucleated near the coast but then propagated to the north and updip, attaining a peak slip of 5–6 m. In contrast, HF seismic radiation is mostly emitted downdip of the region of intense slip, and arrests earlier than the long period rupture, indicating smooth slip along the shallow plate interface in the final phase. A superficially similar earthquake in 1943 with a similar aftershock zone had a much shorter source time function, which matches the duration of HF seismic radiation in the recent event, indicating that the 1943 event lacked the shallow slip.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract The aftershock productivity is known to strongly vary for different mainshocks of the same magnitude, which cannot be simply explained by random fluctuations. In addition to variable source mechanisms, different rheological properties might be responsible for the observed variations. Here we show, for the subduction zone of northern Chile, that the aftershock productivity is linearly related to the degree of mechanical coupling along the subduction interface. Using the earthquake catalog of Sippl et al. (2018, https://doi.org/10.1002/2017JB015384), which consists of more than 100,000 events between 2007 and 2014, and three different coupling maps inferred from interseismic geodetic deformation data, we show that the observed aftershock numbers are significantly lower than expected from the Båth's law. Furthermore, the productivity decays systematically with depth in the uppermost 80 km, while the b value increases. We show that this lack of aftershocks and the observed depth dependence can be simply explained by a linear relationship between the productivity and the coupling coefficient, leading to Båth law only in the case of full coupling. Our results indicate that coupling maps might be useful to forecast aftershock productivity and vice versa.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract The Cenozoic convergence between India and Asia has created Earth's thickest crust in the Pamir‐Tibet Plateau by extreme crustal shortening. Here we study the crustal structure of the Pamir and western Tian Shan, the adjacent margins of the Tajik, Tarim, and Ferghana Basins, and the Hindu Kush, using data collected by temporary seismic experiments. We derive, compare, and combine independent observations from P and S receiver functions. The obtained Moho depth varies from ~40 km below the basins to a double‐normal thickness of 65–75 km underneath the Pamir and Hindu Kush. A Moho doublet—with the deeper interface down to a depth of ~90 km—coincides with the arc of intermediate‐depth seismicity underneath the Pamir, where Asian continental lower crust delaminates and rolls back. The crust beneath most of the Central and South Pamir has a low Vp/Vs ratio (〈1.70), suggesting a dominantly felsic composition, probably a result of delamination/foundering of the mafic rocks of the lower crust. Beneath the Cenozoic gneiss domes of the Central and South Pamir, which represent extensional core complexes, the Vp/Vs ratios are moderate to high (~1.75), consistent with the previously observed, midcrustal low‐velocity zones, implying the presence of crustal partial melts. Even higher crustal average Vp/Vs ratios up to 1.90 are found in the sedimentary basins and along the Main Pamir Thrust. The ratios along the latter—the active thrust front of the Pamir—may reflect fluid accumulations within a strongly fractured fault system.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-26
    Description: [1]  We present new seismicity images based on a two-year seismic deployment in the Pamir and SW Tien Shan. 9,532 earthquakes were detected, located and rigorously assessed in a multistage automatic procedure utilizing state-of-the-art picking algorithms, waveform cross-correlation and multi-event relocation. The obtained catalog provides new information on crustal seismicity and reveals the geometry and internal structure of the Pamir-Hindu Kush intermediate-depth seismic zone with improved detail and resolution. The relocated seismicity clearly defines at least two distinct planes, one beneath the Pamir, the other beneath the Hindu Kush, separated by a gap across which strike and dip directions change abruptly. The Pamir seismic zone forms a thin (ca.10 km width), curviplanar arc that strikes east–west and dips south at its eastern end, then progressively turns by 90 degrees to reach a north–south strike and a due eastward dip at its southwestern termination. Pamir deep seismicity outlines several streaks at depths between 70 and 240 km, with the deepest events occurring at its southwestern end. Intermediate-depth earthquakes are clearly separated from shallow crustal seismicity, which is confined to the uppermost 20–25 km. The Hindu Kush seismic zone extends from 40 to 250 km depth and generally strikes east–west, yet bends northeast, towards the Pamir, at its eastern end. It may be divided vertically into an upper and lower part separated by a gap at approx. 150 km depth. In the upper part, events form a plane that is 15–25 km thick in cross-section and dips sub-vertically north to northwest. Seismic activity is more virile in the lower part, where several distinct clusters form a complex pattern of sub-parallel planes. The observed geometry could be reconciled either with a model of two-sided subduction of Eurasian and previously underthrusted Indian continental lithosphere or by a purely Eurasian origin of both Pamir and Hindu Kush seismic zones, which necessitatesa contortion and oversteepening of the latter.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-16
    Description: In 2007 a M7.7 earthquake occurred near the town of Tocopilla within the northern Chile seismic gap. Main shock slip, derived from coseismic surface deformation, was confined to the depth range between 30 and 55 km. We relocated ∼1100 events during six months before and one week after the main shock. Aftershock seismicity is first congruent to the main shock slip and then it spreads offshore west and northwest of Mejillones Peninsula (MP). Waveform modeling for 38 aftershocks reveals source mechanisms that are in the majority similar to the main shock. However, a few events appear to occur in the upper plate, some with extensional mechanisms. Juxtaposing the Tocopilla aftershocks with those following the neighboring 1995 Antofagasta earthquake produces a striking symmetry across an EW axis in the center of MP. Events seem to skirt around MP, probably due to a shallower Moho there. We suggest that the seismogenic coupling zone in northern Chile changes its frictional behavior in the downdip direction from unstable to mostly conditionally stable. For both earthquake sequences, aftershocks agglomerate in the conditionally stable region, whereas maximum inter-seismic slip deficit and co-seismic slip occurs in the unstable region. The boundary between the unstable and conditionally stable zones parallels the coastline. We identify a similar segmentation for other earthquakes in Chile and Peru, where the offshore segments break in great M 〉 8 earthquakes, and the onshore segments in smaller M 〈 8 earthquakes. Using critical taper analysis, we demonstrate a causal relationship between varying slip behavior on the interface and forearc wedge anatomy that can be attributed to spatial variations in the rate-dependency of friction.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract We used data from 〉100 permanent and temporary seismic stations to investigate seismicity patterns related to the 1 April 2014 M8.1 Iquique earthquake in northern Chile. Applying a multistage automatic event location procedure to the seismic data, we detected and located ~19,000 foreshocks, aftershocks and background seismicity for one month preceding and nine month following the mainshock. Foreshocks skirt around the updip limit of the mainshock asperity; aftershocks occur mainly in two belts updip and downdip of it. The updip seismicity primarily locates in a zone of transitional friction on the megathrust and can be explained by preseismic stress loading due to slow‐slip processes and afterslip driven by increased Coulomb failure stress (CFS) due to the mainshock and its largest aftershock. Afterslip further south also triggered aftershocks and repeating earthquakes in several EW striking streaks. We interpret the streaks as markers of surrounding creep that could indicate a change in fault mechanics and may have structural origin, caused by fluid‐induced failure along presumed megathrust corrugations. Megathrust aftershocks terminate updip below the seaward frontal prism in the outer continental wedge that probably behaves aseismically under velocity‐strengthening conditions. The inner wedge locates further landward overlying the megathrust's seismogenic zone. Further downdip, aftershocks anticorrelate with the two major afterslip patches resolved geodetically and partially correlate with increased CFS, overall indicating heterogeneous frictional behavior. A region of sparse seismicity at ~40‐50 km depth is followed by the deepest plate interface aftershocks at ~55‐65 km depth, which occur in two clusters of significantly different dip.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-02-01
    Print ISSN: 0009-9236
    Electronic ISSN: 1532-6535
    Topics: Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...