ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). pp. 3481-3499.
    Publication Date: 2020-02-06
    Description: We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analyzed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 10–30 years. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 15–35 years. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation from the frontal regions of the Southern Ocean. The marginal seas export 1.0 Sv into the Atlantic within 15–40 years, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly influenced by upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO exports at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (2). pp. 1471-1484.
    Publication Date: 2021-02-08
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship‐based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy‐resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional‐scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5–1 Sv about a mean of 3.4 Sv, may account for up to 7–14% of the heat flux between Scotland and Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (21). pp. 9379-9386.
    Publication Date: 2020-11-04
    Description: A global ocean model with 1/12∘ horizontal resolution is used to assess the seasonal cycle of surface Eddy Kinetic Energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ∼350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies towards the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 . pp. 4517-4523.
    Publication Date: 2019-02-26
    Description: The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to inter-annual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here, the multi-decadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 sec-2 decade-1. In the western Atlantic EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multi-decadal trends are close to zero. The non-uniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The upper ocean circulation of the Pacific and Indian Oceans is connected through both the Indonesian Throughflow north of Australia and the Tasman leakage around its south. The relative importance of these two pathways is examined using virtual Lagrangian particles in a high-resolution nested ocean model. The unprecedented combination of a long integration time within an eddy-permitting ocean model simulation allows the first assessment of the interannual variability of these pathways in a realistic setting. The mean Indonesian Throughflow, as diagnosed by the particles, is 14.3 Sv, considerably higher than the diagnosed average Tasman leakage of 4.2 Sv. The time series of Indonesian Throughflow agrees well with the Eulerian transport through the major Indonesian Passages, validating the Lagrangian approach using transport-tagged particles. While the Indonesian Throughflow is mainly associated with upper ocean pathways, the Tasman leakage is concentrated in the 400–900 m depth range at subtropical latitudes. Over the effective period considered (1968–1994), no apparent relationship is found between the Tasman leakage and Indonesian Throughflow. However, the Indonesian Throughflow transport correlates with ENSO. During strong La Niñas, more water of Southern Hemisphere origin flows through Makassar, Moluccas, Ombai, and Timor Straits, but less through Moluccas Strait. In general, each strait responds differently to ENSO, highlighting the complex nature of the ENSO-ITF interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (11). pp. 3972-3978.
    Publication Date: 2019-09-23
    Description: The abyssal warming around Antarctica is one of the most prominent multidecadal signals of change in the global ocean. Here we investigate its dynamical impacts on the Atlantic Meridional Overturning Circulation (AMOC) by performing a set of experiments with the ocean-sea ice model NEMO-LIM2 at 1/2 degrees horizontal resolution. The simulations suggest that the ongoing warming of Antarctic Bottom Water (AABW), already affecting much of the Southern Hemisphere with a rate of up to 0.05 degrees C decade(-1), has important implications for the large-scale meridional overturning circulation in the Atlantic Ocean. While the abyssal northward flow of AABW is weakening, we find the upper AMOC cell to progressively strengthen by 5-10% in response to deep density changes in the South Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the subtropical North Atlantic, implying that the process may counteract the projected decrease of the AMOC in the next decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (9). pp. 6221-6237.
    Publication Date: 2019-09-23
    Description: Previous studies have shown that ENSO's anomalous equatorial winds, including the observed southward shift of zonal winds that occurs around the event peak, can be reconstructed with the first two Empirical Orthogonal Functions (EOFs) of equatorial region wind stresses. Using a high-resolution ocean general circulation model, we investigate the effect of these two EOFs on changes in warm water volume (WWV), interhemispheric mass transports, and Indonesian Throughflow (ITF). Wind stress anomalies associated with the first EOF produce changes in WWV that are dynamically consistent with the conceptual recharge oscillator paradigm. The ITF is found to heavily damp these WWV changes, reducing their variance by half. Wind stress anomalies associated with the second EOF, which depicts the southward wind shift, are responsible for WWV changes that are of comparable magnitude to those driven by the first mode. The southward wind shift is also responsible for the majority of the observed interhemispheric upper ocean mass exchanges. These winds transfer mass between the Northern and the Southern Hemisphere during El Niño events. Whilst water is transferred in the opposite direction during La Niña events, the magnitude of this exchange is roughly half of that seen during El Niño events. Thus, the discharging of WWV during El Niño events is meridionally asymmetric, while the WWV recharging during a La Niña event is largely symmetric. The inclusion of the southward wind shift is also shown to allow ENSO to exchange mass with much higher latitudes than that allowed by the first EOF alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-18
    Description: All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...