ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-31
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver-function analysis on a dense 2D seismic array. Mapping of slab geometry for over 300 km along-strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydratation embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-20
    Description: Three unburied ocean bottom seismometers (OBS) equipped with Trillium 240 s broad-band seismometers recorded spheroidal free oscillations of the Earth out to periods over 1000 s period, for the M = 8.1, April 1, 2007 Solomon Islands earthquake. In contrast to broadband observatories of the global network that operate in quiet continental locations, these instruments were dropped on the several-km thick layer of sediments of the forearc and accretionary wedge of the Lesser Antilles subduction zone. Furthermore, a high ambient noise level due to the ocean surface infragravity waves is expected to cover the frequency band of Earth's normal modes band when recorded at these sites. In spite of these hostile environmental conditions, the frequency of clearly defined peaks of the Earth's normal modes were measured after the earthquake. This suggests that the recording of normal modes and long period waves can be extended to parts of the hitherto inaccessible ocean with currently available OBS technology.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-01
    Description: Seismic reflection data collected offshore of Alaska Peninsula across the western edge of the Semidi segment show distinctive variations in reflection characteristics of the megathrust fault with depth, suggesting changes in structure that may relate to seismic behavior. From the trench to ~40 km landward, two parallel reflections are observed, which we interpret as the top and bottom of the subducted sediment section. From ~50-95 km from the trench, the plate interface appears as a thin (〈400 ms) reflection band. Deeper and farther landward, the plate interface transitions to a thicker (1–1.5 s) package of reflections, where it appears to intersect the forearc mantle wedge based on our preferred interpretation of the continental Moho. Synthetic waveform modeling suggests that the thin reflection band is best explained by a single ~100- to 250-m-thick low velocity zone, whereas the thick reflection band requires a 3- to 5-km-thick zone of thin layers. The thin reflection band is located at the center of the 1938 Mw 8.2 Semidi earthquake rupture zone that now experiences little interplate seismicity. The thick reflection band starts at the downdip edge of the rupture zone and correlates with a dipping band of seismicity and projects to the location of tremor at greater depth. We interpret the thin reflection band as a compacted sediment layer and/or localized shear zone. The thick reflection band could be caused by a wide deformation zone with branching faults and/or fluid-rich layers, representing a broad transition from stick–slip sliding to slow slip and tremor.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver function analysis on a dense 2-D seismic array. Mapping of slab geometry for over 300 km along strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydration embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...