ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2012-10-13
    Description: Knowledge of seismic properties in an earthquake rupture zone is essential for understanding the factors controlling rupture dynamics. We use data from aftershocks following the Maule earthquake to derive a three-dimensional seismic velocity model of the central Chile forearc. At 36°S, we find a high vp (〉7.0 km/s) and high vp/vs (∼1.89) anomaly lying along the megathrust at 25 km depth, which coincides with a strong forearc Bouguer gravity signal. We interpret this as a subducted topographic high, possibly a former seamount on the Nazca slab. The Maule earthquake nucleated at the anomaly's updip boundary; yet high co-seismic slip occurred where the megathrust is overlain by lower seismic velocities. Sparse aftershock seismicity occurs within this structure, suggesting that it disrupts normal interface seismogenesis. These findings imply that subducted structures can be conducive to the nucleation of large megathrust earthquakes, even if they subsequently hinder co-seismic slip and aftershock activity.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Megathrust earthquakes are commonly accompanied by increased upper‐plate seismicity and occasionally triggered fault slip. In Chile, crustal faults slipped during and after the 2010 Maule (M8.8) earthquake. We studied the El Yolki fault (EYOF), a transtensional structure midways the Maule rupture not triggered in 2010. We mapped a Holocene coastal plain using LiDAR, which did not reveal surface ruptures. However, the inner‐edge and shoreline angles along the coastal plain as well as 4.3‐4.0 ka intertidal sediments are back‐tilted on the EYOF footwall block, documenting 10 m of vertical displacement. These deformed markers imply ~2 mm/yr throw rate and dislocation models a slip rate of 5.6 mm/yr for the EYOF. In a 5‐m‐deep trench, the Holocene intertidal sediments onlap to five erosive steps, interpreted as staircase wave‐cut landforms formed by discrete events of relative sea‐level drop. We tentatively associated these steps with coseismic uplift during EYOF earthquakes between 4.3 and 4.0 ka. The Maule earthquake rupture may be subdivided into three subsegments based on coseismic slip and gravity anomalies. Coulomb stress transfer models predict neutral stress changes at the EYOF during the Maule earthquake but positive changes for a synthetic slip distribution at the central subsegment. If EYOF earthquakes were triggered by megathrust events, their slip distribution was probably focused in the central subsegment. Our study highlights the millennial variability of crustal faulting and the megathrust earthquake cycle in Chile, with global implications for assessing the hazards posed by hidden but potentially seismogenic coastal faults along subduction zones.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...