ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract We use GPS data to show synchronization between the 2011 and 2016 drought cycle in California, accelerated uplift of the Sierra Nevada Mountains, and enhanced magmatic inflation of the Long Valley Caldera (LVC) magmatic system. The drought period coincided with faster uplift rate, changes in gravity seen in the Gravity Recovery and Climate Experiment (GRACE), and changes in standardized relative climate dryness index. These observations together suggest that the Sierra Nevada elevation is sensitive to changes in hydrological loading conditions, which subsequently influences the LVC magmatic system. We use robust imaging of horizontal GPS velocities to derive time‐variable shear and dilatational strain rates in a region with highly variable station distribution. The results show that the highest strain rates are near the eastern margin of the Sierra Nevada and western edge of the Central Walker Lane (CWL) passing directly through LVC. The drought period saw geographic shifts in the distribution in active shear strain in the CWL more than 60 km from the LVC, delineating the minimum extent over which the active magmatic system affects the CWL tectonic environment. We analyze declustered seismicity data to show that locations with higher seismicity rates tend to be (1) areas with higher strain rates and (2) areas in which strain rates increased during drought‐enhanced inflation. We hypothesize that drought conditions reduce vertical surface mass loading, which decreases pressure at depth in the LVC system, in turn enhances magmatic inflation, and drives horizontal elastic stress changes that redistribute active CWL strain and modulate seismicity.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-27
    Description: Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 M w 6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement (PGD) magnitude scaling, centroid moment tensor (CMT) solution and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved post-event image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-21
    Description: Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling non-uniform in both space and time, tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here, we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e. uplift) after removing the known effect of GIA, resulting in an increase of 0.24 +/- 0.08 mm year −1 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in 20 th century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA related VLM. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-08
    Description: The Death Valley Fault Zone (DVFZ), located in southeastern California, is an active fault system with an evolved pull-apart basin that has been deforming over the past 6 Myr. We present a study of the interseismic motion and long-term stress accumulation rates to better understand the nature of both past and present-day loading conditions of the DVFZ. Using a 3-D semi-analytic viscoelastic deformation model, combined with geodetic velocities derived from the Mobile Array of GPS for Nevada Transtension (MAGNET) network and the Southern California Earthquake Center (SCEC) Crustal Motion Map version 4 (CMMv4) GPS data, we establish parameters for interseismic slip rate and apparent locking depth for four DVFZ fault segments. Our preferred model provides good fit to the data (1.0 mm/yr and 1.5 mm/yr RMS misfit in the fault-perpendicular and fault-parallel directions, respectively) and yields apparent locking depths between 9.8–17.1 km and strike-slip rates of 3–7 mm/yr for the segments. We also determine subsidence (0.5–0.8 mm/yr) and extension (1.0–1.2 mm/yr) rates in the pull-apart basin region. With these parameters, we construct a DVFZ evolution model for the last 6 Myr that recreates the motion of the fault blocks involved in the formation of the present-day geological structures in Death Valley. Finally, using Coulomb stress accumulation rates derived from our model (0.25–0.49 MPa/100 yr), combined with earthquake recurrence interval estimates of 500 to 2600 years, we assess present-day seismic hazards with calculated moment magnitudes ranging from 6.7–7.7.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-07
    Description: We infer rates of crustal deformation in the northern Walker Lane (NWL) and western Basin and Range using data from the Mobile Array of GPS for Nevada transtension, and other continuous GPS networks including the EarthScope Plate Boundary Observatory. We present 224 new GPS velocities, correct them for the effects of viscoelastic postseismic relaxation, and use them to constrain a block model to estimate fault slip rates. The data segregate the NWL into domains based on differences in deformation rate, pattern, and style. Deformation is transtensional, with highest rates near the western and eastern edges of the NWL. Some basins, e.g., Tahoe, experience shear deformation and extension. Normal slip is distributed throughout the NWL and Basin and Range, where 11 subparallel range-bounding normal fault systems have an average horizontal extension rate of 0.1 mm/yr. Comparison between geologic and geodetic slip rates indicates that out of 12 published geologic rates, 10 agree with geodetic rates to within uncertainties. This suggests that smaller crustal blocks move steadily, similar to larger lithospheric plates, and that geodetic measurements of slip rates are reliable in zones of complex crustal deformation. For the two slip rates that disagree, geologic rates are greater. The vertical axis rotation rate of the Carson domain is −1.3 ± 0.1°/My clockwise, lower than the 3° to 6°/My obtained in paleomagnetic measurements. This suggests that vertical axis rotation rates may have decreased over the last 9–13 My as the role of faulting has increased at the expense of rigid rotations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-14
    Description: Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, MIDAS is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes v ij =( x j –x i )/( t j –t i ) computed between all data pairs i 〉 j . For normally distributed data, Theil-Sen and least-squares trend estimates are statistically identical; but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by one year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr RMS accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-29
    Description: We estimate the rate of vertical land motion (VLM) in the region around the western Transverse Ranges (WTR), Ventura, and Big Bend of the San Andreas Fault (SAF) of southern California using data from four geodetic techniques: GPS, InSAR, leveling and tide gauges. We use a new analysis technique called GPS Imaging to combine the techniques and leverage the synergy between 1) high geographic resolution of InSAR, 2) precision, stability and geocentric reference frame of GPS, 3) decades-long observation of VLM with respect to the sea surface from tide gauges, and 4) relative VLM along dense leveling lines. The uncertainty in the overall rate field is ~1 mm/yr, though some individual techniques have uncertainties as small as 0.2 mm/yr. The most rapid signals are attributable to subsidence in aquifers and groundwater changes. Uplift of the WTR is geographically continuous, adjacent to the SAF and appears related to active crustal contraction across Pacific/North America plate boundary fault system. Uplift of the WTR and San Gabriel Mountains is ~2 mm/yr and is asymmetrically focused west of the SAF, consistent with interseismic strain accumulation across thrust faults in the Ventura area and Santa Barbara channel that accommodate contraction against the near vertical SAF.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-13
    Description: We introduce "GPS Imaging," a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, though uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between Late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-06
    Description: We use data from western US GPS networks to estimate the rate, pattern, and style of tectonic deformation of the central Basin and Range Province (BRP). Previous geodetic investigations have found the crust of eastern Nevada and western Utah to act as a rigid microplate, with zero deformation rates to within measurement uncertainty. Observed transients in GPS time series have led others to propose a megadetachment model, predicting that the central BRP behaves as a microplate, but with time varying translation. Here we reassess these hypotheses, benefiting from a significant increase in GPS stations and time span, and innovations in analysis techniques. Our results show that the BRP crust deforms everywhere and all the time. In a group of 24 stations between longitude -113.5° and -116.8° we find strain rates of 1.9 ± 0.2 × 10 -9  yr -1 extension directed N55˚W and 2.2 ± 0.2 × 10 -9  yr -1 contraction directed N35˚E, inconsistent with microplate behavior. The linearity of time series of strain from GPS station triplets is inconsistent with episodic translation of quasi-rigid domains. One exception is station EGAN that exhibits non-linear motion not found in adjacent stations. The dominant signal in Nevada is distributed shear consistent with Pacific/North America relative plate motion, suggesting that stresses are transmitted through the lithosphere at least 800 km from the plate boundary. The observed active extension is consistent with earthquake focal mechanisms and is in agreement with integrated rates estimated from earthquake geology. Our results do not support the proposed megadetachment in the BRP.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-13
    Description: We present results of a slip model from joint inversion of strong motion and static GPS data for the M w 7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. While the event strikes obliquely to the slab we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...