ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The climate of the last two millennia was characterised by decadal to multi‐centennial variations which were recorded in terrestrial records and had important societal impacts. The cause of these climatic events is still under debate but changes in the North Atlantic circulation have often been proposed to play an important role. In this review we compile available high‐resolution paleoceanographic datasets from the northern North Atlantic and Nordic Seas. The records are grouped into regions related to modern ocean conditions and their variability is discussed. We additionally discuss our current knowledge from modelling studies, with a specific focus on the dynamical changes that are not well inferred from the proxy records. An illustration is provided through the analysis of two climate model ensembles and an individual simulation of the last millennium. This review thereby provides an up‐to‐date paleo‐perspective on the North Atlantic multidecadal to multi‐centennial ocean variability across the last two millennia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-24
    Description: Solar radiation received at the Earth's surface (Rs) is comprised of two components, the direct radiation (Rd) and the diffuse radiation (Rf). Rd, the direct beam from the sun, is essential for concentrated solar power generation. Rf, scattered by atmospheric molecules, aerosols, or cloud droplets, has a fertilization effect on plant photosynthesis. But how Rd and Rf change diurnally is largely unknown owing to the lack of long-term measurements. Taking advantage of 22 years of homogeneous hourly surface observations over China, this study documents the climatological means and evolutions in the diurnal cycles of Rd and Rf since 1993, with an emphasis on their implications for solar power and agricultural production. Over the solar energy resource region, we observe a loss of Rd which is relatively large near sunrise and sunset at low solar elevation angles when the sunrays pass through the atmosphere on a longer pathway. However, the concentrated Rd energy covering an average 10-hr period around noon during a day is relatively unaffected. Over the agricultural crop resource region, the large amounts of clouds and aerosols scattering more of the incoming light result in Rf taking the main proportion of Rs during the whole day. Rf resources and their fertilization effect in the main crop region of China further enhances since 1993 over almost all hours of the day. Key Points: - The loss of direct radiation over China since 1993 is relatively large at sunrise and sunset with little effect on solar power generation - The diffuse component dominates solar radiation normally near sunrise and sunset, but for the whole day over the main sown area of China - The diffuse fraction is further enhanced in the main sown area of China over almost all hours of the day since 1993
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-08
    Description: The increasing demand for metals is pushing forward the progress of deep‐sea mining industry. The abyss between the Clarion and Clipperton Fracture Zones (CCFZ), a region holding a higher concentration of minerals than land deposits, is the most targeted area for the exploration of polymetallic nodules worldwide, which may likely disturb the seafloor across large areas and over many years. Effects from nodule extraction cause acute biodiversity loss of organisms inhabiting sediments and polymetallic nodules. Attention to deep‐sea ecosystems and their services has to be considered before mining starts but the lack of basic scientific knowledge on the methodologies for the ecological surveys of fauna in the context of deep‐sea mining impacts is still scarce. We review the methodology to sample, process and investigate metazoan infauna both inhabiting sediments and nodules dwelling on these polymetallic‐nodule areas. We suggest effective procedures for sampling designs, devices and methods involving gear types, sediment processing, morphological and genetic identification including metabarcoding and proteomic fingerprinting, the assessment of biomass, functional traits, fatty acids, and stable isotope studies within the CCFZ based on both first‐hand experiences and literature. We recommend multi‐ and boxcorers for the quantitative assessments of meio‐ and macrofauna, respectively. The assessment of biodiversity at species level should be focused and/or the combination of morphological with metabarcoding or proteomic fingerprinting techniques. We highlight that biomass, functional traits, and trophic markers may provide critical insights for biodiversity assessments and how statistical modeling facilitates predicting patterns spatially across point‐source data and is essential for conservation management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-10
    Description: Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...