ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (103)
  • Wiley  (96)
  • Mineralogical Society of Great Britain and Ireland
  • Mineralogical Society of America
Collection
  • Articles  (103)
Journal
  • 1
    Publication Date: 2007-02-28
    Print ISSN: 1742-464X
    Electronic ISSN: 1742-4658
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-02
    Description: We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γ glyx of 2 × 10 -3 , and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m -3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde ( R GF  = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO 2 ). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO 2 . Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 1, January 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-01
    Description: Manganoquadratite, ideally AgMnAsS3, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as dark gray, anhedral to subhedral grains up 0.5 mm across, closely associated with alabandite, Mn-rich calcite, Mn-rich sphalerite, proustite, pyrite, pyrrhotite, tennantite, argentotennantite, stannite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S. Manganoquadratite is opaque with a metallic luster and possesses a reddish-brown streak. It is brittle, the Vickers microhardness (VHN10) is 81 kg/mm2 (range 75–96) (corresponding Mohs hardness of 2–2½). The calculated density is 4.680 g/cm3 (on the basis of the empirical formula). In plane-polarized reflected light, manganoquadratite is moderately bireflectant and very weakly pleochroic from dark gray to a blue gray. Internal reflections are absent. Between crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 29.5, 31.8 (471.1 nm), 28.1, 30.5 (548.3 nm), 27.3, 29.3 (586.6 nm), and 26.0, 28.2 (652.3 nm), respectively.Manganoquadratite is tetragonal, space group P4322, with unit-cell parameters: a = 5.4496(5), c = 32.949(1) Å, V = 978.5(1) Å3, c:a = 6.046, Z = 8. The structure, refined to R1 = 0.0863 for 907 reflections with Fo 〉 4σ(Fo), consists of a stacking along [001] of alabandite-like Mn2S2 layers connected to each to other by a couple of AgAsS2 sheets where As3+ forms typical AsS3 groups, whereas Ag+ cations are fivefold coordinated. The six strongest lines in the observed X-ray powder-diffraction pattern [d in Å (I/I0) (hkl)] are: 3.14 (60) (116), 2.739 (50) (0 0 12), 2.710 (100) (200), 1.927(70) (2 0 12 + 220), 1.645 (25) (3 0 16), and 1.573 (20) (22 12).Electron microprobe analyses gave the chemical formula (on the basis of six atoms) (Ag0.95Cu0.05)∑=1.00 (Mn0.96Pb0.04)∑=1.00(As0.87Sb0.14)∑=1.01S2.99, leading to the simplified formula AgMnAsS3.The name was chosen to indicate the close analogy of the formula and unit-cell dimensions with quadratite, Ag(Cd,Pb)(As,Sb)S3. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA 2011-008.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-07
    Description: In this study, physical and chemical properties of ultrafine aerosol particles are investigated at an urban site in Bakersfield, California, during the CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change) campaign in May and June. Ultrafine particle measurements include particle number size distributions by a scanning Differential Mobility Analyzer (DMA) and size resolved aerosol chemical composition determined with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Growth events of ultrafine particles were observed on most days and had a very regular pattern. A nucleation mode centered at ∼20 nm appeared in the morning and grew to 40–100 nm throughout the day. Microphysical modeling and size-resolved HR-ToF-AMS concentrations showed that organic components provided most of the particle growth in the ultrafine mode, and sulfate provided on most days only a minor contribution to the mass of this mode. The ultrafine particle mass was largely dominated by organics (77%), and was at maximum during the afternoon. Elemental carbon (EC) and the AMS tracer C4H9+ for hydrocarbon-like organic aerosol (HOA) peaked in the early morning during rush hour, indicative of primary emissions. The fact that the particle number concentration peaked in the afternoon, when EC was at minimum, indicates that the midday increase in number concentration was likely due to new particle formation. The potential importance of solar radiation, the condensation sink of vapor on existing particles, concentrations of OH, O3, SO2, NH3, and VOCs for both condensational growth and new particle formation is evaluated based on the covariation of these parameters with ultrafine mass. The results suggest that the ultrafine particles are from secondary sources that are co-emitted or co-produced with glyoxal and formaldehyde.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, EarlyView.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, EarlyView.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉 〈p〉Agmantinite, ideally Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as orange–red crystals up to 100 μm across. Agmantinite is translucent with adamantine lustre and possesses a red streak. It is brittle. Neither fracture nor cleavage were observed. Based on the empirical formula the calculated density is 4.574 g/cm〈span〉3〈/span〉. On the basis of chemically similar compounds the Mohs hardness is estimated at between 2 to 2½. In plane-polarised light agmantinite is white with red internal reflections. It is weakly bireflectant with no observable pleochroism with red internal reflections. Between crossed polars, agmantinite is weakly anisotropic with reddish brown to greenish grey rotation tints. The reflectances (〈span〉R〈/span〉〈span〉min〈/span〉 and 〈span〉R〈/span〉〈span〉max〈/span〉) for the four standard wavelengths are: 19.7 and 22.0 (470 nm); 20.5 and 23.2 (546 nm); 21.7 and 2.49 (589 nm); and 20.6 and 23.6 (650 nm), respectively.〈/p〉 〈p〉Agmantinite is orthorhombic, space group 〈span〉P〈/span〉2〈span〉1〈/span〉〈span〉nm〈/span〉, with unit-cell parameters: 〈span〉a〈/span〉 = 6.632(2), 〈span〉b〈/span〉 = 6.922(2), 〈span〉c〈/span〉 = 8.156(2) Å, 〈span〉V〈/span〉 = 374.41(17) Å〈span〉3〈/span〉, 〈span〉a〈/span〉:〈span〉b〈/span〉:〈span〉c〈/span〉 0.958:1:1.178 and 〈span〉Z〈/span〉 = 2. The crystal structure was refined to 〈span〉R〈/span〉 = 0.0575 for 519 reflections with 〈span〉I 〉〈/span〉 2σ(〈span〉I〈/span〉). Agmantinite is the first known mineral of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190522072108342-0385:S0026461X18001391:S0026461X18001391_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉〈span〉M〈/span〉〈span〉II〈/span〉〈span〉M〈/span〉〈span〉IV〈/span〉S〈span〉4〈/span〉 type that is derived from wurtzite rather than sphalerite by ordered substitution of Zn, analogous to the substitution pattern for deriving stannite from sphalerite. The six strongest X-ray powder-diffraction lines derived from single-crystal X-ray diffraction data [〈span〉d〈/span〉 in Å (intensity)] are: 3.51 (s), 3.32 (w), 3.11 (vs), 2.42 (w), 2.04 (m) and 1.88 (m). The empirical formula (based on 8 apfu) is (Ag〈span〉1.94〈/span〉Cu〈span〉0.03〈/span〉)〈span〉Σ1.97〈/span〉(Mn〈span〉0.98〈/span〉Zn〈span〉0.05〈/span〉)〈span〉Σ1.03〈/span〉Sn〈span〉0.97〈/span〉S〈span〉4.03〈/span〉.The crystal structure-derived formula is Ag〈span〉2〈/span〉(Mn〈span〉0.69〈/span〉Zn〈span〉0.31〈/span〉)〈span〉Σ1.00〈/span〉SnS〈span〉4〈/span〉 and the simplified formula is Ag〈span〉2〈/span〉MnSnS〈span〉4〈/span〉.〈/p〉 〈p〉The name is for the composition and the new mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2014-083).〈/p〉 〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-01
    Description: Menchettiite, ideally AgPb2.40Mn1.60Sb3As2S12, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as black, anhedral to subhedral grains up to 200 µm across, closely associated with orpiment, tennantite/tetrahedrite, other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S, and calcite. Menchettiite is opaque with a metallic luster and possesses a black streak. It is brittle, with uneven fracture; the Vickers microhardness (VHN100) is 128 kg/mm2 (range 119–136) (corresponding to a Mohs hardness of 2½–3). The calculated density is 5.146 g/cm3 (on the basis of the empirical formula). In plane-polarized incident light, menchettiite is weakly to moderately bireflectant and weakly pleochroic from dark gray to a dark green. Internal reflections are absent. Between crossed polarizers, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 33.1, 39.8 (471.1 nm), 31.8, 38.0 (548.3 nm), 30.9, 37.3 (586.6 nm), and 29.0, 35.8 (652.3 nm), respectively.Menchettiite is monoclinic, space group P21/n, with unit-cell parameters: a = 19.233(2), b = 12.633(3), c = 8.476(2) Å, ß = 90.08(2)°, V = 2059.4(8) Å3, a: b: c 1.522:1:0.671, Z = 2, and it is twinned on {100}. The crystal structure was refined to R = 0.0903 for 2365 reflections with Fo 〉 4s(Fo) and it resulted to be topologically identical to those of ramdohrite, uchucchacuaite, and fizélyite. The six strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 3.4066 (39) (3¯12), 3.4025 (39) (312), 3.2853 (100) (520), 2.8535 (50) (2¯32), 2.8519 (47) (232), and 2.1190 (33) (004). Electron-microprobe analyses gave the chemical formula Ag1.95Cu0.01Pb4.81Mn3.20Fe0.02Zn0.01Sb6.09As3.94Bi0.01S23.95Se0.01, on the basis of 44 atoms and according to the structure refinement results. Menchettiite can be classified among the Sb-rich members of the lillianite homeotypic series, which are described with the general formula AgxPb3-2xSb2+xS6. Besides the heterovalent substitution 2Pb2+ ? Ag+ + Sb3+ taken into consideration by the above formula, two isovalent substitutions relate menchettiite to the other lillianite homeotypes, i.e., Mn2+ ? Pb2+ and As3+ ? Sb3+. The name is after Silvio Menchetti (1937–), Professor of Mineralogy and Crystallography at the University of Florence. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011–009).
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈div data-abstract-type="normal"〉〈p〉Structural data for weishanite, an alloy of Au, Ag and Hg, were collected for the first time from a crystal from the Keystone Mine, Colorado, USA. The structure was solved in the space group 〈span〉P〈/span〉6〈span〉3〈/span〉/〈span〉mmc〈/span〉 with the unit cell 〈span〉a〈/span〉 = 2.9348(8) and 〈span〉c〈/span〉 = 4.8215(18) Å] and refined to 〈span〉R〈/span〉 = 0.0299 for 40 observed reflections [4σ(〈span〉F〈/span〉) level] and four parameters and to 〈span〉R〈/span〉 = 0.0356 for all 47 independent reflections. The weishanite structure can be considered a derivative of the zinc structure, with Au, Ag and Hg disordered in the same structural position. On this basis, we suggest that the formula is normalized to 1 atom with 〈span〉Z〈/span〉 = 2, leading, for the sample investigated, to Au〈span〉0.41〈/span〉Ag〈span〉0.31〈/span〉Hg〈span〉0.28〈/span〉 (electron microprobe data). Accordingly, weishanite can be considered the Au-rich isotype of schachnerite. A comparison with other Au/Ag-Hg alloys is presented together with a critical discussion about the nomenclature rules to be applied to alloys and simple metals.〈/p〉〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...