ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is home to a unique fauna that is disproportionately affected by global warming but that remains under-studied. Due to their high mobility and responsiveness to global warming, cephalopods and fishes are good indicators of the reshuffling of Arctic communities. Here, we established a nekton biodiversity baseline for the Fram Strait, the only deep connection between the North Atlantic and Arctic Ocean. Using universal primers for fishes (12S) and cephalopods (18S), we amplified environmental DNA (eDNA) from seawater (50–2700 m) and deep-sea sediment samples collected at the LTER HAUSGARTEN observatory. We detected 12 cephalopod and 31 fish taxa in the seawater and seven cephalopod and 28 fish taxa in the sediment, including the elusive Greenland shark (Somniosus microcephalus). Our data suggest three fish (Mallotus villosus, Thunnus sp., and Micromesistius poutassou) and one squid (Histioteuthis sp.) range expansions. The detection of eDNA of pelagic origin in the sediment also suggests that M. villosus, Arctozenus risso, and M. poutassou as well as gonatid squids are potential contributors to the carbon flux. Continuous nekton monitoring is needed to understand the ecosystem impacts of rapid warming in the Arctic and eDNA proves to be a suitable tool for this endeavor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-10
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-23
    Description: Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: In the Arctic Ocean, sea-ice decline will significantly change the structure of biological communities. At the same time, changing nutrient dynamics can have similarly strong and potentially interacting effects. To investigate the response of the taxonomic and trophic structure of planktonic and ice-associated communities to varying sea-ice properties and nutrient concentrations, we analysed four different communities sampled in the Eurasian Basin in summer 2012: (1) protists and (2) metazoans from the under-ice habitat, and (3) protists and (4) metazoans from the epipelagic habitat. The taxonomic composition of protist communities was characterised with 18S meta-barcoding. The taxonomic composition of metazoan communities was determined based on morphology. The analysis of environmental parameters identified (i) a ‘shelf-influenced’ regime with melting sea ice, high-silicate concentrations and low NOx (nitrate + nitrite) concentrations; (ii) a ‘Polar’ regime with low silicate concentrations and low NOx concentrations; and (iii) an ‘Atlantic’ regime with low silicate concentrations and high NOx concentrations. Multivariate analyses of combined bio-environmental datasets showed that taxonomic community structure primarily responded to the variability of sea-ice properties and hydrography across all four communities. Trophic community structure, however, responded significantly to NOx concentrations. In three of the four communities, the most heterotrophic trophic group significantly dominated in the NOx-poor shelf-influenced and Polar regimes compared to the NOx-rich Atlantic regime. The more heterotrophic, NOx-poor regimes were associated with lower productivity and carbon export than the NOx-rich Atlantic regime. For modelling future Arctic ecosystems, it is important to consider that taxonomic diversity can respond to different drivers than trophic diversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-19
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-18
    Description: The Arctic Ocean is home to a unique fauna that is disproportionately affected by global warming but that remains under-studied. Due to their high mobility and responsiveness to global warming, cephalopods and fishes are good indicators of the reshuffling of Arctic communities. Here, we established a nekton biodiversity baseline for the Fram Strait, the only deep connection between the North Atlantic and Arctic Ocean. Using universal primers for fishes (12S) and cephalopods (18S), we amplified environmental DNA (eDNA) from seawater (50–2700 m) and deep-sea sediment samples collected at the LTER HAUSGARTEN observatory. We detected 12 cephalopod and 31 fish taxa in the seawater and seven cephalopod and 28 fish taxa in the sediment, including the elusive Greenland shark (Somniosus microcephalus). Our data suggest three fish (Mallotus villosus, Thunnus sp., and Micromesistius poutassou) and one squid (Histioteuthis sp.) range expansions. The detection of eDNA of pelagic origin in the sediment also suggests that M. villosus, Arctozenus risso, and M. poutassou as well as gonatid squids are potential contributors to the carbon flux. Continuous nekton monitoring is needed to understand the ecosystem impacts of rapid warming in the Arctic and eDNA proves to be a suitable tool for this endeavor.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...