ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ILP/M 06.0077
    In: Publication of the International Lithosphere Programme
    In: Marine and Petroleum Geology
    Type of Medium: Monograph available for loan
    Pages: S. 785-970 : zahlr. graph. Darst.
    Series Statement: Publication of the International Lithosphere Programme 215
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-14
    Description: The architecture of sedimentary basins reflects the relationship between accommodation space and sediment supply, their rates and localization being variable during basin evolution. The mechanisms driving the interplay between tectonics and sedimentation in extensional back-arc basins overlying rheological weak zones inherited from an earlier orogenic evolution are less understood. A typical example is the Pannonian back-arc basin of Central Europe. It is floored by continental lithosphere and was affected by large amounts of extension driven by the subduction roll-back that took place in the Carpathians and/or Dinarides. A novel kinematic and seismic sequence stratigraphic interpretation calibrated by wells allows the quantification of the link between the formation of half-grabens and coeval sedimentation in the Great Hungarian Plain part of the basin. While the lower order tectonic induced cycles characterize the main phases of extension in various sub-basins, the higher order cyclicity and associated unconformities define individual moments of fault (re-)activation. Our novel interpretation of a temporal and spatial migration of extension during Miocene times explains the contrasting present-day strike of various sub-basins as a result of their gradual clockwise rotation. Incorporating the observed asymmetry, in particular the associated footwall exhumation, infers that the amount of extension is much larger than previously thought. The quantitative link between tectonics and sedimentation has allowed the definition of a novel model of sedimentation in asymmetric basins that can be ported to other natural scenarios of similarly hyper-extended back-arc basins observed elsewhere.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-08
    Description: Inferences from analogue models support lithospheric folding as the primary response to large-scale shortening manifested in the present day topography of Iberia. This process was active from the late Oligocene-early Miocene during the Alpine orogeny and was probably enhanced by reactivation of inherited Variscan faults. The modeling results confirm the dependence of fold wavelength on convergence rate and hence the strength of the layers of the lithosphere such that fold wavelength is longest for fast convergence rates favoring whole lithosphere folding. Folding is associated with the formation of dominantly pop-up type mountain ranges in the brittle crust and thickening of the ductile layers in the synforms of the buckle folds by flow. The mountain ranges are represented by upper crustal pop-ups forming the main topographic relief. The wavelengths of the topographic uplifts, both, in model and nature suggest mechanical decoupling between crust and mantle. Moreover, our modeling results suggest that buckling in Iberia took place under rheological conditions where the lithospheric mantle is stronger than the lower crust. The presence of an indenter, inducing oblique shortening in response to the opening of the King's Trough in the north western corner of the Atlantic Iberian margin controls the spacing and obliquity of structures. This leads to the transfer of the deformation from the moving walls towards the inner part of the model, creating oblique structures in both brittle and ductile layers. The effect of the indenter, together with an increase on the convergence rate produced more complex brittle structures. These results show close similarities to observations on the general shape and distribution of mountain ranges and basins in Iberia, including the Spanish Central System and Toledo Mountains.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-17
    Description: Back-arc basin evolution is driven by processes active at the main subduction zone typically assuming the transition from an extensional back-arc, during the retreat of a mature slab, to a contractional basin, during high-strain collisional processes. Such a transition is observed in the Black Sea, where the accurate quantification of shortening effects is hampered by the kinematically unclear geometries of Cenozoic inversion. By means of seismic profiles interpretation, quantified deformation features and associated syn-tectonic geometries on the Romanian offshore, this study demonstrates that uplifted areas, observed by exploration studies, form a coherent thick-skinned thrust system with N-ward vergence. Thrusting inverted an existing geometry made up by successive grabens that were inherited from the Cretaceous extensional evolution. The shortening started during late Eocene times and gradually affected all areas of the Western Black Sea Basin during Oligocene and Miocene times, deformation being coherently correlated across its western margin. The mechanism of this generalized inversion is the transmission of stresses during the collision recorded in the Pontides-Balkanides system. Syn-tectonic sedimentation in the Western Black Sea demonstrates that this process was continuous and took place through the onset of gradual shortening migrating northward. Although the total amount of shortening is roughly constant in an E-W direction, individual thrusts have variable offsets, deformation being transferred between structures located at distance across the strike of the system. The Black Sea example demonstrates that the vergence and offset of thrusts can change rapidly along the strike of such a compressional back-arc system. This generates apparently contrasting geometries that accommodate the same orogenic shortening.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-19
    Description: We use lithospheric-scale analogue models to study the reactivation of preexisting heterogeneities under oblique shortening, and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analogue experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non-reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-10-01
    Print ISSN: 0954-4879
    Electronic ISSN: 1365-3121
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-02-18
    Print ISSN: 0954-4879
    Electronic ISSN: 1365-3121
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-12-01
    Description: Postcollisional tectonic movements in orogens and their adjacent foreland basins related to intraplate stresses and the presence of a remnant slab are likely to induce significant deformations overprinting the existing patterns of nappe emplacement. In the Carpathian Bend Zone, Romania, vertical motions associated with very limited postorogenic intraplate shortening are of similar magnitude as those generally caused by large orogenic deformations. In the Latest Miocene-Pliocene, up to 6 km of postcollisional sediments of remarkably parallel stratification were deposited in a basin extending over a large part of the present-day orogen. The Early Quaternary featured a dramatical change as the orogen was uplifted while subsidence continued in the basin, tilting the basin flank adjacent to the orogen to a vertical position. The remnant slab presently below the Bend zone in Vrancea is the prime mechanism to have driven the Pliocene subsidence. The Quaternary changes and the eastwards migration of the pattern of vertical motions can be explained by large-scale folding, in response to the overall compressive regime that is recorded in the whole Pannonian-Carpathian area. © 2006 Blackwell Publishing Ltd.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-06-01
    Description: A finite difference model, allowing for episodic movements along different faults, is used to examine the effect of tectonics on the stratigraphic signature in the Oseberg-Brage area in the northern Viking Graben. Constraints are provided by local exploration and production well data and 3-D seismic coverage, and a regional depth-converted seismic line. In the modelling, we focus on the influence of varying rates of fault movement on stratigraphic signatures such as upflank unconformities and changes in layer thickness. We couple the basinwide features of the northern Viking Graben with the fault-block-scale features of the Oseberg-Brage area by using parameter constraints derived by large-scale modelling as input for the local-scale model. In addition, subsidence patterns resulting from the basinwide model were used as background subsidence for the fault block model of the Oseberg-Brage area. The model results indicate that the alternating activation of different faults with varying extension rates can cause stratigraphic features such as unconformities, condensation and onlap/offlap patterns. Onlap occurs during periods of low extension rates. An increase in extension rate along a fault causes footwall uplift, resulting in condensation or upflank erosion yielding unconformities. This influence can also affect sub-basins further away from the fault. Downdip layer thickening reflects the local tilting of fault blocks. The coupling of the local and regional scales turns out to be essential in explaining the stratigraphy of the Oseberg-Brage area: basinward and, notably, updip layer thickening as observed on some of the fault blocks can only be explained by activity of the boundary fault on the opposing, western margin of the northern Viking Graben.
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-02
    Print ISSN: 0950-091X
    Electronic ISSN: 1365-2117
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...