ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (3)
  • MARGINS Office, Palisades, NY  (1)
  • 1
    Publication Date: 2014-02-06
    Description: [1]  Extension of the continental lithosphere leads to the formation of rift basins, or rifted continental margins if break-up occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures, and different amount of extension and crustal thinning. Here, we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β-factor of ~1.3-1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β-factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively towards the south-east. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on MCS images. Locally, basalt flows are imaged intruding sediment in this zone and heat flow values locally exceed 100 mW/m 2 . Velocities within the entire crust range 4.0-6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic under-plating may not be present. The characteristics of the pre-, syn-, and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick post-rift sediments were deposited in half-grabens that are bounded by large fault-blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show the evolution from the less extended rift in the north with a fairly symmetric conjugate structure, to the asymmetric margins farther south. This structural evolution is consistent with W-E rift propagation and southward increasing extension rates.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-15
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    MARGINS Office, Palisades, NY
    In:  MARGINS Newsletter, 83 . pp. 3-5.
    Publication Date: 2017-10-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The West Iberia margin is the focus of intense research since the 1980s, with some of the most exemplary geophysical cross-sections and drilling expeditions. Those data sets have been used to create conceptual models of rifting used as a template to interpret margins worldwide. We present two collocated ∼350 km long lines of multi-channel seismic (MCS) streamer data and wide-angle seismic (WAS) data collected across the Tagus Abyssal Plain (TAP). We use travel-times of first arrivals identified at WAS and reflected seismic phases identified at both WAS and MCS records to jointly invert for the P wave velocity (Vp) distribution and the geometry of a sediment unconformity, the top of the basement, and the Moho boundary. The Vp model shows that the TAP basement is more complex than previously inferred, presenting abrupt boundaries between five domains. Domain I under the foot of the slope and Domain III under the abyssal plain display Vp values and gradients of thin continental crust. In between, Domain II displays a steep Vp gradient and high Vp values at shallow depth that support that basement is made of exhumed partly serpentinized mantle. Domain IV and Domain V, further oceanward, have oceanic crust Vp structure. The new results support an unanticipated complex rift history during the initial separation of Iberia and America. We propose a geodynamic scenario characterized by two phases of extension separated by a jump of the locus of extension, caused by the northward propagation of the oceanic spreading center during the J-anomaly formation, which terminated continental rifting.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...