ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-11
    Description: When volcanic mountains slide into the sea, they trigger tsunamis. How big are these waves, and how far away can they do damage? Ritter Island provides some answers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-14
    Description: 7.10.2019 - 13.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-21
    Description: 14.10.2019 - 20.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-28
    Description: 21.10.2019 - 27.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 13 pp.
    Publication Date: 2020-04-20
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-04-23
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-20
    Description: Key Points High-resolution reflection seismic data reveals that the internal architecture of the Kolumbo Volcanic Chain The Kolumbo Volcanic Chain evolved during two episodes along NE-SW striking normal faults A prominent volcanic ridge connects the Kolumbo Volcanic Chain with Santorini highlighting a former connection between both systems Abstract The Christiana-Santorini-Kolumbo volcanic field in the southern Aegean Sea is one of the most hazardous volcanic regions in the world. Forming the northeastern part of this volcanic field, the Kolumbo Volcanic Chain (KVC) comprises more than submarine volcanic cones. However, due to their inaccessibility, little is known about the spatio-temporal evolution and tectonic control of these submarine volcanoes and their link to the volcanic plumbing system of Santorini. In this study, we use multichannel reflection seismic imaging to study the internal architecture of the KVC and its link to Santorini. We show that the KVC evolved during two episodes, which initiated at ~1 Ma with the formation of mainly effusive volcanic edifices along a NE-SW trending zone. The cones of the second episode were formed mainly by submarine explosive eruptions between 0.7 and 0.3 Ma and partly developed on top of volcanic edifices from the first episode. We identify two prominent normal faults that underlie and continue the two main trends of the KVC, indicating a direct link between tectonics and volcanism. In addition, we reveal several buried volcanic centers and a distinct volcanic ridge connecting the KVC with Santorini, suggesting a connection between the two volcanic centers in the past. This connection was interrupted by a major tectonic event and, as a result, the two volcanic systems now have separate, largely independent plumbing systems despite their proximity
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Located on the Hellenic Arc, the Christiana-Santorini-Kolumbo (CSK) rift zone represents one of the most active and hazardous volcano-tectonic systems in the Mediterranean. Although this rift zone has been intensively studied, its tectonic evolution and the interplay of volcanism and tectonism are still poorly understood. In this study, we use high-resolution reflection seismic imagery to reconstruct the opening of the rift basins. For the first time, we relate the activity of individual faults with the activity of specific volcanic centers in space and time. Our analysis shows a pre-volcanic NNE-SSW-oriented paleo basin underneath the CSK volcanoes, representing a transfer zone between Pliocene ESE-WNW-oriented basins, which was overprinted by a NE-SW-oriented tectonic regime hosting Late Pliocene volcanism that initiated at the Christiana Volcano. All subsequent volcanoes evolved parallel to this trend. Two major Pleistocene tectonic pulses preceded fundamental changes in the volcanism of the CSK rift including the occurrence of widespread small-scale volcanic centers followed by focusing of activity at Santorini with increasing explosivity. The observed correlation between changes in the tectonic system and the magmatism of the CSK volcanoes suggests a deep-seated tectonic control of the volcanic plumbing system. In turn, our analysis reveals the absence of large-scale faults in basin segments affected by volcanism indicating a secondary feedback mechanism on the tectonic system. A comparison with the evolution of the neighboring Kos-Nisyros-Yali volcanic field zone and Rhodos highlights concurrent regional volcano-tectonic changes, suggesting a potential arc-wide scale of the observed volcano-tectonic interplay. Key Points We reconstruct the volcano-tectonic evolution of the Christiana-Santorini-Kolumbo rift zone using multichannel seismic data The overprint of a Pleistocene NE-SW striking fault system on a Pliocene E-W oriented system initiated the emergence of volcanism Regional tectonics had a primary control on the volcanic plumbing system, while magmatism had a secondary influence on the tectonic system
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Seafloor heat flow provides information about the thermal evolution of the lithosphere, the magnitude and timing of volcanic activity, and hydrothermal circulation patterns. In the central Gulf of California, the Guaymas Basin is part of a young marginal spreading rift system that experiences high sedimentation (1–5 km/Myr) and widespread magmatic intrusions in the axial troughs and the off-axis regions. Heat flow variations record magmatic and sedimentary processes affecting the thermal evolution of the basin. Here, we present new seismic evidence of a widespread bottom-simulating reflection (BSR) in the northwestern Guaymas Basin. Using the BSR depths and thermal conductivity measurements, we determine geothermal gradient and surface heat flow variations. The BSR-derived heat flow values are less than the conductive lithospheric heat flow predictions for mid-oceanic ridges. They suggest that high sedimentation (0.3–1 km/Myr) suppresses the lithospheric heat flow. In the central and southeastern regions of the basin, the BSR-derived geothermal gradient increases as the intruded magmatic units reach shallower subsurface depths. Thermal modeling shows that recent (〈5000 years) igneous intrusions (〈500 m below the seafloor) and associated fluid flow elevate the surface heat flow up to five times. BSR-derived geothermal gradients correlate little with the depth of the shallowest magmatic emplacements to the north, where the intrusions have already cooled for some time, and the associated hydrothermal activity is about to shut down. Key Points - A regional bottom-simulating reflection (BSR) in the Guaymas Basin indicates a widespread occurrence of gas hydrates - The BSR derived thermal gradients show wavy patterns farther away from the spreading centre, indicating strong lateral heat flow variations - High sedimentation suppresses heat flow, while recent magmatic intrusion and fluid advection increase heat flow
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...