ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Radiation Applications & Instrumentation. Part D, 15 (1988), S. 681-684 
    ISSN: 1359-0189
    Keywords: Earthquake Research ; LR 115 ; Radon ; alpha-meter
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Radiation Applications & Instrumentation. Part D, 12 (1986), S. 407-409 
    ISSN: 1359-0189
    Keywords: CR-39 ; Kodak - CN ; Spacelab-1 ; cosmic rays
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-26
    Description: Dissolved organic nitrogen (DON) and phosphorus (DOP) represent the most abundant form of their respective nutrient pool in the surface layer of the oligotrophic oceans and play an important role in nutrient cycling and productivity. Since DOP is generally more labile than DON, it provides additional P that may stimulate growth of N 2 -fixing diazotrophs that supply fixed nitrogen to balance denitrification in the ocean. In this study, we introduce semi-recalcitrant components of DON and DOP as state variables in an existing global ocean–atmosphere-sea ice-biogeochemistry model of intermediate complexity to assess their impact on the spatial distribution of N 2 -fixation and the size of the marine fixed nitrogen inventory. Large-scale surface datasets of global DON and Atlantic Ocean DOP are used to constrain the model. Our simulations suggest that both preferential DOP remineralization and phytoplankton DOP uptake are important “non-Redfield” processes (i.e., deviate from molar N:P=16) that need to be accounted for to explain the observed patterns of DOP. Additional non-Redfield DOP sensitivity experiments testing DOM production rate uncertainties that best reproduce the observed spatial patterns of DON and DOP stimulate additional N 2 -fixation that increases the size of the global marine fixed nitrogen inventory by 4.7±1.7% compared to the simulation assuming Redfield DOM stoichiometry that underestimates the observed nitrogen inventory. The extra 8 Tg yr −1 of N 2 -fixation stimulated in the Atlantic Ocean is mainly responsible for this increase due to its large spatial separation from water column denitrification, which buffers any potential nitrogen surplus in the Pacific Ocean. Our study suggests that the marine fixed nitrogen budget is sensitive to non-Redfield DOP dynamics because access to the relatively labile DOP pool expands the ecological niche for N 2 -fixing diazotrophs.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-15
    Description: Growing slowly, marine N 2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. This is at odds with observed high N 2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model we find that the additional N and energy investments required for exo-enzymatic break-down of DOP gives N 2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N 2 -fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N 2 -fixation rates in the oligotrophic North Atlantic.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-30
    Description: A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the southern hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21 s t century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO 2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-11
    Description: Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in mid- to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these sub-surface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial timescales.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-09
    Description: Literature data on benthic dissolved iron (DFe) fluxes (µmol m −2 d −1 ), bottom water oxygen concentrations (O 2BW , μM) and sedimentary carbon oxidation rates (C OX , mmol m −2 d −1 ) from water depths ranging from 80 to 3700 m were assembled. The data were analyzed with a diagenetic iron model to derive an empirical function for predicting benthic DFe fluxes: where γ (=170 µmol m −2 d −1 ) is the maximum flux for sediments at steady state located away from river mouths. This simple function unifies previous observations that C OX and O 2BW are important controls on DFe fluxes. Upscaling predicts a global DFe flux from continental margin sediments of 109 ± 55 Gmol yr −1 , of which 72 Gmol yr −1 is contributed by the shelf (〈200 m) and 37 Gmol yr −1 by slope sediments (200–2000 m). The predicted deep-sea flux (〉2000 m) of 41 ± 21 Gmol yr −1 is unsupported by empirical data. Previous estimates of benthic DFe fluxes derived using global iron models are far lower (ca. 20–30 Gmol yr −1 ). This can be attributed to (i) inadequate treatment of the role of oxygen on benthic DFe fluxes, and (ii) improper consideration of continental shelf processes due to coarse spatial resolution. Globally-averaged DFe concentrations in surface waters simulated with an intermediate-complexity Earth system climate model (UVic ESCM) were a factor of two higher with the new function. We conclude that (i) the DFe flux from marginal sediments has been underestimated in the marine iron cycle, and (ii) iron scavenging in the water column is more intense than currently presumed.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-18
    Description: Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly-mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modelled mixed layer depth. Our method is able to reproduce the interannual variability of independent in-situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-05
    Description: This study presents results from 46 sensitivity experiments carried out with three structurally simple (2, 3, and 6 biogeochemical state variables, respectively) models of production, export and remineralization of organic phosphorus, coupled to a global ocean circulation model and integrated for 3000 years each. The models' skill is assessed via different misfit functions with respect to the observed global distributions of phosphate and oxygen. Across the different models, the global root-mean square misfit with respect to observed phosphate and oxygen distributions is found to be particularly sensitive to changes in the remineralization length scale, and also to changes in simulated primary production. For this metric, changes in the production and decay of dissolved organic phosphorus as well as in zooplankton parameters are of lesser importance. For a misfit function accounting for the misfit of upper-ocean tracers, however, production parameters and organic phosphorus dynamics play a larger role. Regional misfit patterns are investigated as indicators of potential model deficiencies, such as missing iron limitation, or deficiencies in the sinking and remineralization length scales. In particular, the gradient between phosphate concentrations in the northern North Pacific and the northern North Atlantic is controlled predominantly by the biogeochemical model parameters related to particle flux. For the combined 46 sensitivity experiments performed here, the global misfit to observed oxygen and phosphate distributions shows no clear relation to either simulated global primary or export production for either misfit metric employed. However, a relatively tight relationship that is very similar for the different model of different structural complexity is found between the model-data misfit in oxygen and phosphate distributions to simulated meso- and bathypelagic particle flux. Best agreement with the observed tracer distributions is obtained for simulated particle fluxes that agree most closely with sediment trap data for a nominal depth of about 1000 m, or deeper.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-03
    Description: For marine biogeochemical models used in simulations of climate change scenarios, the ability to account for adaptability of marine ecosystems to environmental change becomes a concern. The potential for adaptation is expected to be larger for a diverse ecosystem compared to a monoculture of a single type of (model) algae, such as typically included in biogeochemical models. Recent attempts to simulate phytoplankton diversity in global marine ecosystem models display remarkable qualitative agreement with observed patterns of species distributions. However, modeled species diversity tends to be systematically lower than observed and, in many regions, is smaller than the number of potentially limiting nutrients. According to resource competition theory, the maximum number of coexisting species at equilibrium equals the number of limiting resources. By simulating phytoplankton communities in a chemostat model and in a global circulation model, we show here that a systematic underestimate of phytoplankton diversity may result from the standard modeling assumption of identical stoichiometry for the different phytoplankton types. Implementing stoichiometric variation among the different marine algae types in the models allows species to generate different resource supply niches via their own ecological impact. This is shown to increase the level of phytoplankton coexistence both in a chemostat model and in a global self-assembling ecosystem model.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...