ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-07
    Description: On the basis of interactions between landscape characteristics and precipitation inputs, watersheds respond differently to different climatic inputs. The objective of this study was to quantitatively characterize controls on runoff generation from two first order micro-catchments in the Amazonia region. The study investigated the variation of hydrological signatures at micro-catchment scale and related these to landscape and land cover differences and weather descriptors that control the observed responses. One catchment is a pasture cleared of all natural vegetation in the early 1980s, and the second catchment is a primary tropical forest with minor signs of disturbance. Water levels and meteorological variables were continuously monitored during the study period (December 2012-May 2013). Water level measurements were converted to discharge, evapotranspiration was quantified using Penman-Monteith equation and catchment pedohydrological properties were also determined. During the study period, mean total rainfall was 1200mm, and direct runoff ratios were 0.29 and 0.12 for the pasture and forest catchments, respectively. Base flow index was relatively high in the forest catchment (0.76) compared with pasture catchment (0.63). Results from this study showed that the pasture catchment had a 35% higher mean stream flow. Analysis of selected individual rainstorm events also showed peak discharges, which were attained much faster in the pasture catchment compared with the forest catchment. At both sites, rainfall-runoff responses were highly dependent on surface and subsurface flow generation. Overland flow was observed in the pasture site during intense rainfall events. The pasture catchment exhibited higher event water contribution than the forest catchment. Findings from this research suggest that shallow lateral pathways play a significant role in controlling runoff generation processes in the forest catchment, whereas infiltration excess runoff generation processes dominate in the pasture catchment. The findings in this study suggest that the conversion of forest to pasture may lead to important changes in runoff generation processes and water storage in these head water catchments. © 2014 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.
    Keywords: Bolivia; Amazon; Deforestation; Proximate causes; Spatial analysis; Multinomial logistic regression ; 551 ; Environment; Geology; Geography (general); Regional/Spatial Science; Climate Change; Nature Conservation; Oceanography
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...