ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (3)
  • 2010-2014  (3)
  • 1
    Publication Date: 2019-07-08
    Description: Correlations between particulate organic carbon (POC) and mineral fluxes in the deep ocean have inspired the inclusion of “ballast effect” parameterizations in carbon cycle models. A recent study demonstrated regional variability in the effect of ballast minerals on the flux of POC in the deep ocean. We have undertaken a similar analysis of shallow export data from the Arctic, Atlantic, and Southern Oceans. Mineral ballasting is of greatest importance in the high-latitude North Atlantic, where 60% of the POC flux is associated with ballast minerals. This fraction drops to around 40% in the Southern Ocean. The remainder of the export flux is not associated with minerals, and this unballasted fraction thus often dominates the export flux. The proportion of mineral-associated POC flux often scales with regional variation in export efficiency (the proportion of primary production that is exported). However, local discrepancies suggest that regional differences in ecology also impact the magnitude of surface export. We propose that POC export will not respond equally across all high-latitude regions to possible future changes in ballast availability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: Estimates of the amount of carbon sequestered in the ocean interior per unit iron (Fe) supplied, as quantified by the sequestration efficiency (Ceffx), vary widely. Such variability in Ceffx has frequently been attributed to estimate uncertainty rather than intrinsic variability. Here we derive new estimates of Ceffx for the subpolar North Atlantic, where Fe stressed conditions have recently been demonstrated. Derived values of Ceffx from across the region, including areas subject to atypical external Fe fertilization events during the year of sample collection (2010), ranged from 17 to 19 kmol C (mol Fe−1). Comparing these estimates with values from other systems, considered in the context of variable bloom durations in the different oceanographic settings, we suggest that apparent variability in Ceffx may be related to the mode of Fe delivery.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 28 (11). pp. 1327-1342.
    Publication Date: 2019-08-06
    Description: The biological carbon pump (BCP) transfers carbon from the surface ocean into the oceans' interior, mainly in the form of sinking particles with an organic component, and thereby keeps atmospheric CO2 at significantly lower levels than if the oceans were abiotic. The depth at which these sinking particles are remineralized is a key control over atmospheric CO2. Particle sinking speed is likely to be a critical parameter over remineralization depth. Carbon export is usually controlled by large, rapidly sinking particles (〉150 m·d−1); however, under some circumstances sinking velocity distributions are strongly bimodal with a significant fraction of total flux being carried by slowly (〈10 m·d−1) sinking particles. Therefore, there is an interest in determining sinking particle velocities and their variations with depth, as well as in understanding the interplay between sinking velocity distributions and carbon export. Here, we use profiles of total and particulate concentrations of the naturally occurring radionuclide pair 210Po-210Pb from the Porcupine Abyssal Plain (PAP) site (48°N, 16.5°W) to estimate depth variation in particle sinking speed using a one-box model and inverse techniques. Average sinking speeds increase from 60 ± 30 m·d−1 at 50 m, to 75 ± 25 m·d−1 and 90 ± 20 m·d−1 at 150 and 500 m. Furthermore, a sensitivity analysis suggests that at the PAP site the measured 210Po profiles are inconsistent with the usually assumed sinking velocities of 200 m·d−1. We hypothesize that a trend of increasing velocity with depth might be caused by a gradual loss of slow-sinking material with depth, a factor with significant implications for regional carbon budgets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...