ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (5)
  • 2010-2014  (5)
Collection
Years
  • 2010-2014  (5)
Year
  • 1
    Publication Date: 2012-04-05
    Description: Large fine mode–dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often ∼0.4–0.5 μm radius (volume distribution); the smaller mode, typically ∼0.12 to ∼0.20 μm, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the “shoulder” of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-10
    Description: In this work we characterize optical properties and assess the direct radiative effect of an ash plume observed on April 17, 2010 by AERONET, lidar and broadband solar flux measurements collocated on the roof of the Laboratory of Atmospheric Optics in Lille, northern France. These measurements allowed experimental evaluation of ash radiative impact and validation of simulations. The derived aerosol model of ash is characterized by a bi-modal size distribution dominated by coarse mode centered at a radius of 1.5 μm and by relatively strong absorption at short wavelengths (single scattering albedo of 0.81 ± 0.02 at 440 nm as opposed to 0.92 ± 0.02 at 670, 870 and 1020 nm). Due to relatively low aerosol optical thickness during the ash plume transport (∼0.26 at 440 nm), which is unfavorable for AERONET retrievals, the uncertainties in derived ash aerosol model were additionally evaluated. The complex refractive index of ash was derived assuming that effective refractive index retrieved by AERONET for externally mixed bi-component aerosol can be approximated as an average of refractive indices of two components weighted by their volume concentrations. Evaluation of the accuracy of this approximation showed acceptably small errors in simulations of single scattering albedo and aerosol phase function over the range of scattering angles observed by the AERONET almucantar. Daily average radiative forcing efficiency of ash calculated for a land surface reflectance representing Lille was about −93 ± 12 Wm−2 τ550−1 and −31 ± 2 Wm−2 τ550−1 at the bottom and top of the atmosphere; the values for an ocean surface reflectance are also provided.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-05-20
    Description: An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10–20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Ångström exponent. At the same time, it shows an increasing trend in the single scattering albedo, by ∼0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000–2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-03
    Description: LIRIC (LIdar-Radiometer Inversion Code) is applied to combined lidar and sun photometer data from Granada EARLINET and AERONET station corresponding to different case studies. The main aim of this analysis is to evaluate the stability of LIRIC output volume concentration profiles for different aerosol types, aerosol loadings and vertical distribution of the atmospheric aerosols. For this purpose, in a first part, three case studies corresponding to different atmospheric situations are analysed to study the influence of the user-defined input parameters in LIRIC when varied in a reasonable range. Results of this study evidence the capabilities of LIRIC to retrieve vertical profiles of microphysical properties during daytime by combination of the lidar and the sun photometer systems in an automatic and self-consistent way. However, spurious values may be obtained in the lidar incomplete overlap region depending on the structure of the aerosol layers. In a second part, the use of a second sun photometer located in Cerro Poyos, in the same atmospheric column as Granada but at higher altitude, allowed us to obtain LIRIC retrievals from two different altitudes with independent sun photometer measurements in order to check the self-consistency and robustness of the method. Retrievals at both levels are compared, providing very good agreement (differences below 5 µm 3 /cm 3 ) in those cases with the same aerosol type in the whole atmospheric column. However, some assumptions such as the height-independency of parameters (sphericity, size distribution or refractive index, among others) need to be carefully reviewed for those cases with presence of aerosol layers corresponding to different types of atmospheric aerosols.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-21
    Description: [1]  As a representative site of the southern African biomass-burning region, sun-sky data from the 15-year AERONET deployment at Mongu, Zambia was analyzed. For the biomass burning season months (July-November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from ~0.84 in July to ~0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Ångström Exponent (440–870 nm; r 2  = 0.02). A significant downward seasonal trend in imaginary refractive index (r 2  = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Further, retrievals of SSA at 388 nm from the OMI satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of AOD from the MODIS C5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. MISR, however, appears less sensitive to the absorption-induced bias.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...