ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The Tierra Blanca (TB) eruptive suite comprises the last four major eruptions of Ilopango caldera in El Salvador (≤45 ka), including the youngest Tierra Blanca Joven eruption (TBJ; ∼106 km3): the most voluminous event during the Holocene in Central America. Despite the protracted and productive history of explosive silicic eruptions at Ilopango caldera, many aspects regarding the longevity and the prevailing physicochemical conditions of the underlying magmatic system remain unknown. Zircon 238U-230Th geochronology of the TB suite (TBJ, TB2, TB3, and TB4) reveals a continuous and overlapping crystallization history among individual eruptions, suggesting persistent melt presence in thermally and compositionally distinct magma reservoirs over the last ca. 80 kyr. The longevity of zircon is in contrast to previously determined crystallization timescales of 〈10 kyr for major mineral phases in TBJ. This dichotomy is explained by a process of rhyolitic melt segregation from a crystal-rich refractory residue that incorporates zircon, whereas a new generation of major mineral phases crystallized shortly before eruption. Ti-in-zircon temperatures and amphibole geothermobarometry suggest that rhyolitic melt was extracted from different storage zones of the magma reservoir as indicated by distinct but synchronous thermochemical zircon histories among the TB suite eruptions. Zircon from TBJ and TB2 suggests magma differentiation within deeper and hotter parts of the reservoir, whereas zircon from TB3 and TB4 instead hints at crystallization in comparatively shallower and cooler domains. The assembly of the voluminous TBJ magma reservoir was also likely enhanced by cannibalization of hydrothermally altered components as suggested by low-δ18O values in zircon (+4.5 ± 0.3‰).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: archive
    Format: archive
    Format: archive
    Format: image
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The intraplate Hawaiian-Emperor Seamount Chain has long been considered a hotspot track generated by the motion of the Pacific plate over a deep mantle plume, and an ideal feature therefore for studies of volcanic structure, magma supply, plume-crust interaction, flexural loading, and upper mantle rheology. Despite their importance as a major component of the chain, the Emperor Seamounts have been relatively little studied. In this paper, we present the results of an active-source wide-angle reflection and refraction experiment conducted along an ocean-bottom-seismograph (OBS) line oriented perpendicular to the seamount chain, crossing Jimmu guyot. The tomographic P wave velocity model, using ∼20,000 travel times from 26 OBSs, suggests that there is a high-velocity (〉6.0 km/s) intrusive core within the edifice, and the extrusive-to-intrusive ratio is estimated to be ∼2.5, indicating that Jimmu was built mainly by extrusive processes. The total volume for magmatic material above the top of the oceanic crust is ∼5.3 × 104 km3, and the related volume flux is ∼0.96 m3/s during the formation of Jimmu. Under volcanic loading, the ∼5.3-km-thick oceanic crust is depressed by ∼3.8 km over a broad region. Using the standard relationships between Vp and density, the velocity model is verified by gravity modeling, and plate flexure modeling indicates an effective elastic thickness (Te) of ∼14 km. Finally, we find no evidence for large-scale magmatic underplating beneath the pre-existing crust.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: The calving of A-68, the 5,800-km2, 1-trillion-ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice-shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large-scale modifications to Southern Ocean ecosystems and continental ice movements, with global-scale implications. The thinning and rate of future ice-shelf demise is notoriously unpredictable, but models suggest increased shelf-melt and calving will become more common. To date, little is known about sub-ice-shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice-shelf melt, volume loss, retreat, and calving, (b) ice-shelf-associated ecosystems through sub-ice, sediment-core, and pre-collapse and post-collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation 〉 Modeling Species and Community Interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Focused gas migration through the gas hydrate stability zone in vertical gas conduits is a global phenomenon. The process can lead to concentrated gas hydrate formation and seafloor gas seepage, which influences seafloor biodiversity and ocean biogeochemistry. However, much is unknown about how gas and gas hydrate co-exist within and around gas conduits. We present seismic imaging of the gas hydrate system beneath a four-way closure anticlinal ridge at New Zealand's southern Hikurangi subduction margin. Gas has accumulated beneath the base of gas hydrate stability to a thickness of up to ∼240 m, which has ultimately led to hydraulic fracturing and propagation of a vertical gas conduit to the seafloor. Despite the existence of an array of normal faults beneath the ridge, these structures are not exploited as long-range gas flow conduits. Directly beneath the conduit, and extending upward from the regional base of gas hydrate stability, is a broad zone characterized by both negative- and positive-polarity reflections. We interpret this zone as a volume of sediment hosting both gas hydrate and free gas, that developed due to partial gas trapping beneath a mass transport deposit. Similar highly reflective zones have been identified at the bases of other gas conduits, but they are not intrinsic to all gas conduits through gas hydrate systems. We suggest that pronounced intervening sealing units within the gas hydrate stability zone determine whether or not they form.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The Hawaiian-Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long-term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean-Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous with P wave velocities 〈4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strong PmP arrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is home to a unique fauna that is disproportionately affected by global warming but that remains under-studied. Due to their high mobility and responsiveness to global warming, cephalopods and fishes are good indicators of the reshuffling of Arctic communities. Here, we established a nekton biodiversity baseline for the Fram Strait, the only deep connection between the North Atlantic and Arctic Ocean. Using universal primers for fishes (12S) and cephalopods (18S), we amplified environmental DNA (eDNA) from seawater (50–2700 m) and deep-sea sediment samples collected at the LTER HAUSGARTEN observatory. We detected 12 cephalopod and 31 fish taxa in the seawater and seven cephalopod and 28 fish taxa in the sediment, including the elusive Greenland shark (Somniosus microcephalus). Our data suggest three fish (Mallotus villosus, Thunnus sp., and Micromesistius poutassou) and one squid (Histioteuthis sp.) range expansions. The detection of eDNA of pelagic origin in the sediment also suggests that M. villosus, Arctozenus risso, and M. poutassou as well as gonatid squids are potential contributors to the carbon flux. Continuous nekton monitoring is needed to understand the ecosystem impacts of rapid warming in the Arctic and eDNA proves to be a suitable tool for this endeavor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-25
    Description: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2023-10-02
    Description: Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...