ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Arizona Board of Regents on behalf of the University of Arizona, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Radiocarbon 57, no. 1 (2015): 109–122, doi:10.2458/azu_rc.57.18118.
    Description: In response to the increasing demand for 14C analysis of samples containing less than 25 µg C, ultra-small graphitization reactors with an internal volume of ~0.8 mL were developed at NOSAMS. For samples containing 6 to 25 µg C, these reactors convert CO2 to graphitic carbon in approximately 30 min. Although we continue to refine reaction conditions to improve yield, the reactors produce graphite targets that are successfully measured by AMS. Graphite targets produced with the ultra-small reactors are measured by using the Cs sputter source on the CFAMS instrument at NOSAMS where beam current was proportional to sample mass. We investigated the contribution of blank carbon from the ultra-small reactors and estimate it to be 0.3 ± 0.1 µg C with an Fm value of 0.43 ± 0.3. We also describe equations for blank correction and propagation of error associated with this correction. With a few exceptions for samples in the range of 6 to 7 µg C, we show that corrected Fm values agree with expected Fm values within uncertainty for samples containing 6–100 µg C.
    Description: This work was funded by the NSF Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE-0753487). S R Shah Walter was also partially supported by the WHOI Postdoctoral Scholar Program.
    Keywords: Ultra-microscale ; Carbon dioxide ; Graphite ; Accelerator mass spectroscopy ; Methods ; Sample preparation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...