ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-01
    Description: Soil samples from several European countries were scanned using medical computer tomography (CT) device and are now available as CT images. The analysis of these samples was carried out using deep learning methods. For this purpose, a VGG16 network was trained with the CT images (X). For the annotation (y) a new method for automated annotation, ‘surrogate’ learning, was introduced. The generated neural networks (NNs) were subjected to a detailed analysis. Among other things, transfer learning was used to check whether the NN can also be trained to other y-values. Visually, the NN was verified using a gradient-based class activation mapping (grad-CAM) algorithm. These analyses showed that the NN was able to generalize, i.e. to capture the spatial structure of the soil sample. Possible applications of the models are discussed.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-25
    Description: Ecological niche theory asserts that invading species become established only if introduced propagules survive stochastic mortality and can exploit resources unconsumed by resident species. Because their transportation is not controlled by plant health or biosecurity regulations, soil macrofauna decomposers, including earthworms are probably introduced frequently into non-native soils. Yet even with climatic change, exotic earthworm species from southern Europe have not been reported to become established in previously glaciated areas of northern Europe that already have trophically differentiated earthworm communities of ‘peregrine’ species. We discovered established populations of the earthworm Prosellodrilus amplisetosus (Lumbricidae), a member of a genus endemic to southern France, in six habitats of an urban farm in Dublin, Ireland, about 1000 km north of the genus's endemic range. Not only was P. amplisetosus the dominant endogeic (geophagous) earthworm species in two habitats, it also occupied a significantly different trophic position from the resident species, as evinced by stable isotope ratio analysis. The suggested ability of this non-native species to feed on and assimilate isotopically more enriched soil carbon (C) and nitrogen fractions that are inaccessible to resident species portends potential implications of decomposer range expansions for soil functioning including C sequestration.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-01
    Description: We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a 13 CO 2 -enriched atmosphere and quantified 13 C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms ( Allolobophora chlorotica ) and hemiedaphic springtails ( Ceratophysella denticulata ) were highly 13 C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more 13 C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs ( Deroceras reticulatum ) grazed on algal mats. Non-photosynthetic 13 CO 2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...