ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-30
    Description: Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal–silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe 2 O 3 content of the mantle that probably occurred in the first 1 Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe 2 O 3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal–silicate partition coefficients for O and Si, we have modelled core–mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O 3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe 2 O 3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe 2 O 3 during core formation, FeO would have disproportionated to produce Fe 2 O 3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe 2 O 3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...